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Abstract - This paper investigates issues in modeling of current-
mode control. The effects of the current-sampling intrinsic to
current-mode control are analyzed, and inadequately recognized
limitations of linear, time invariant models at high frequencies
are exposed. The paper also examines the geometric methods
used to derive duty ratio constraints in averaged models of
current-mode control. The conclusions are supported by
simulation and experimental results.

1. INTRODUCTION

Modeling of current-mode controlled converters has been
a topic of interest to the power electronics community for
well over a decade. Recently, much effort has been focused
on extending the traditional averaged models to capture high-
frequency behavior [1-3]. Other research has been aimed at
improving modeling accuracy by eliminating subtle flaws in
the derivation of duty ratio constraints for current-mode
control [4,5]. This paper investigates these recent modeling
approaches, and in the process exposes some serious
limitations that have not been adequately accounted for
previously. Section II of the paper investigates the impact of
sampled-data effects on small-signal modeling of current-
mode controlled converters.  Section III examines the
geometric methods used to derive duty ratio constraints used
for averaged models of current-mode control. Comparisons
between models are made using the boost converter example
from [2], shown in Fig. 1. Under normal operating
conditions, the switch is turned on every T seconds, and is
turned off when the inductor current i (r) reaches a peak
value of i (¢) minus a compensating ramp.
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Figure 1 Example boost converter.
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II. SAMPLED-DATA EFFECTS

Efforts to extend small-signal linear, time invariant (LTI)
models of current-mode controlled converters to high
frequencies have been motivated by the desire to improve
control design while retaining simplicity. Typically, low-
frequency averaged models are used for feedback control
design, while a separate high-frequency model is used for
slope compensation of the well-known ripple instability. This
is done because low-frequency averaged models cannot
predict the ripple instability, even under open-loop conditions.
On the other hand, models used for predicting subharmonic
oscillation do not always capture the behavior of converters
operating under closed-loop voltage control. Thus, many
researchers have sought to develop LTI transfer functions that
fully capture the small-signal behavior of current-mode
controlled converters [1-3,6]. Unfortunately, these works
have not sufficiently addressed the limitations imposed by the
current sampling intrinsic to current-mode control, leading to
results that are subject to misinterpretation.

This section of the paper investigates the effects of current
sampling, and assesses their impact on control design. As
described in [1], and illustrated in Fig. 2, an approximate
sample-and-hold relation exists between a perturbation f,(1) in
the control signal i,(z) and the resulting perturbation f,(t) in
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Figure 2 The approximate sample-and-hold relationship between
perturbations in control and perturbations in (instantaneous and
average) inductor current.
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inductor current i, (f) for an open-loop current-mode
controlled converter. The corresponding perturbation in the
one-cycle average inductor current f,(t) is also {,(t), to first
order. These facts form the basis for the derivation in [1,2]
of high-frequency extensions to low-frequency models. A
similar approach, expressed in terms of duty ratio
perturbations, is used in [3]. A more exact numerical
approach to generating a transfer function is described in [6],
but the limitations imposed by current sampling apply equally
there as well. What is not made clear in all these works is
that, because of the sampling and reconstruction, the system
becomes significantly time-varying to perturbations in i,(t)
that approach half the switching frequency. This leads to the
injection of additional frequencies in f,(2) and thereby causes
significant deviations from the results suggested by existing
treatments.

A. Modeling Approach

Consider the effect of a perturbation in the control signal
ift) of a current-mode controlled converter. With the
assumption that the input and output voltages do not vary
significantly, the relation between the perturbation in control
and the resulting current perturbation can be approximated by
a sample-and-hold system, Fig. 2. That is, the exact current
perturbation f,(t) (which is the difference between the
transient and steady-state currents) is well approximated by
the Zero-Order Hold (ZOH) of its samples Ai; , taken at the
turn-off instants. As discussed in [1], the main effects not
modeled by the sample-and-hold approximation are the
variation in sampling time and the finite slope of the current
perturbation transition. The samples Ai;, of the
instantaneous current perturbation can also be seen as
approximate samples of the average current perturbation over
the ensuing interval of length 7. Discrete-time relations can
now be formed between the samples Ai,, of the control
perturbation and samples Af; , of the average inductor current
perturbation, as described in [1]. In the small-signal limit,
the LTI model of [1,2] results, with z-transform transfer
function given by

A (2) M, + M)z

H(z) = =
@ Riz) (M, + M)z - (M, - My)

M)

where M,, M,, and M_ are the slope magnitudes of the rising
inductor current, falling inductor current, and slope-
compensation ramp, respectively, in the nominal steady-state.
(To keep notation streamlined, we employ the same symbol
for time-domain and transform-domain quantities, but using
the arguments z and s to denote the z- and Laplace
transforms, respectively.) Under the preceding assumptions,
the relation between perturbations in control and perturbations
in average inductor current can then be modeled as shown in
Fig. 3. The impulse modulation represents the sampling
action, while the Zero-Order Hold (ZOH) at the output
reconstructs the continuous-time waveform. We use C/D to
denote the conversion of an impulse train to a sequence of
samples, and D/C to denote the inverse operation.

This mode! has been adopted in [1,2] since it predicts how
an initial current perturbation will decay, and can predict
open-loop subharmonic oscillations due to ripple instability,
where a conventional averaged model cannot. The papers
[1,2] then attempt to incorporate the sample-and-hold effect
into continuous-time LTI models by finding a continuous-time
transfer function for the system of Fig. 3. What is ignored
in these works is that the system in Fig. 3 is time-varying for
control perturbations approaching half the switching
frequency, and cannot be described by a transfer function at
these frequencies. That is, the response of the system in Fig.
3 (and the response of current-mode controlled converters) at
these frequencies depends on the position of the control signal
with respect to the sampling points. To see this, note that the
sampling process, which is modeled by impulse modulation,
generates replicas of the input frequency spectrum centered
at multiples of the sampling (or switching) frequency, f,, =
ur:
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Figure 3 System for modeling the relation between perturbations in control and perturbations in current. This model relies on the assumptions

used in forming H(z).
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The effects of the replicas are explicitly ignored in [1,2],
which make the approximation:
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to generate a control-to-current transfer function for the
system of Fig. 3. For low-frequency perturbations, this
approximation is justified, since the frequencies generated by
the replicas will be well filtered by the low-pass ZOH
reconstruction filter in Fig. 3. However, as can be inferred
from the frequency response of the ZOH reconstructor, Fig.
4, the responses due to the replicas will not be well filtered
for higher-frequency perturbations. This generates frequency
components in the output that were not in the input, [7].

B. Simulation Results

To illustrate the preceding point, the converter of Fig. 1
was simulated for the nominal operating condition
corresponding to D = 04 @ I, = 4.89 A, M, = 0, both
with and without a small sinusoidal control perturbation at a
given frequency. The difference between the inductor
currents in the two cases is the small-signal response to the
perturbation. As can be seen from the plots in Fig. 5, the
response begins to deviate significantly from a sinusoid when
the perturbation frequency is within a decade of the switching
frequency. Furthermore, differently phased perturbations
yield very different results. The frequency components due
to the replicas are clearly visible in the output waveforms.

Zero Order Hold Tranefer Funclion

Figure 4 The frequency response of the Zero Order Hold reconstruction
filter.

Similar effects occur in the output voltage waveforms.

What the works of [1-3,6] have set out to capture is the
fundamental component of the response to a sinusoidal
perturbation, in effect computing a describing function. This
is why predictions in those works agree with narrow-band
measurements made using network analyzers. However,
models incorporating their approaches are not necessarily
reliable for assessing closed-loop stability using LTI design
methods. For example, consider the simulated response to a
sinusoidal control perturbation at exactly half the switching
frequency for the converter of Fig. 1 at the operating
condition noted earlier. The amplitude of the perturbation is
approximately 0.1% of the nominal i,(r) = I, with the
describing functions of [1,2] predicting a control-to-inductor-
current gain of 3.2. However, because of the superposition
of the input signal and one of its replicas at this frequency,
the fundamental of the current response to this perturbation,
Fig. 6, is approximately rwice as large as predicted by the
describing function of [1,2]. (The magnitude of the response
plot is normalized to the perturbation magnitude.) The same
magnification occurs in the voltage response. All of this
suggests that there are significant dangers to making
frequency response stability assessments using the LTI model.
Furthermore, the displayed response is for a sine
perturbation, with sampling occurring at points n7+D7, but
differently phased perturbations will yield quite different
results. Other interesting effects are also missed by the
describing function approach. For example, a sinusoidal
perturbation at 0.475f,, yields output waveforms, Fig. 7, that
exhibit strong beating due to the replica at 0.525f,,.

C. Experimental Results

To demonstrate these effects experimentally, the boost
converter of Fig. 1 was constructed. The control circuit built
allows one to set a nominal operating point /, and separately
inject an AC perturbation f,(t) on top of it. The perturbation
signal is capacitively coupled to prevent DC operating point
changes. Monitoring the inductor current with a wide-band
spectrum analyzer allows all of the frequency components
generated by a given perturbation to be observed. Figure 8
shows the spectrum of the response to small-signal
perturbations at different frequencies.  The observed
responses closely match those predicted by our simulations
and the time-varying model of Fig. 3. As half the switching
frequency is approached, the replica harmonic components
become significant. Clearly, an LTI model is insufficient for
describing the system at these frequencies.

What may be concluded from these results is that adding
complexity to low-frequency LTI models in an attempt to
capture high-frequency behavior may be of limited value for
control loop design. Of course, modeling the sampling and
reconstruction process can add accuracy to LTI models at
frequencies where time-varying effects are unimportant. For
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example, as will be seen in Section III, the sampling effects
are apparent in transfer function phase responses even below
one-tenth the switching frequency. However, it must be
stressed that, due to the time-varying nature of the system as
half the switching frequency is approached, LTI model
predictions are only reliable for frequencies well below half
the switching frequency.

ITI. EVALUATION OF AVERAGED MODEL DERIVATIONS

Large-signal, continuous-time averaged models for dc-dc
converters are typically expressed in terms of the continuous
duty ratio d(?) used to control the converter. Here, d(t) may
be defined, [8], as the running average over the interval [¢-
7,1] of the 0-1 switching function q(z), see Fig. 9. In current-
mode control, the duty ratio is implicitly determined by the
circuit waveforms. As a result, an additional duty ratio
constraint must be developed to model current-mode
controlled converters. The duty ratio constraint relates the
‘duty ratio to the control current and state variables of the
converter, and its derivation is usually based on the geometry
of the inductor current waveform. This section of the paper
examines the geometric methods used to derive duty ratio
constraints for averaged models of current-mode control.
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Recently, it was pointed out that geometric derivations of
the duty ratio constraint should be based on transient
waveforms and not steady state waveforms, [4]. The correct
process outlined in [4] can be understood in a general
mathematical context. Consider the method for linearizing a
continuous-time generalized state-space system, which
comprises state equations along with algebraic constraints
that determine some of the auxiliary variables occurring in
the state equations. (This development closely follows the
one for discrete-time systems presented in [8].) We start
with the nonlinear, time-invariant generalized state-space
system

d
o = fE@rmwa) @)
0 =g(x(),r(nw()

where x is the vector of state variables, r is the vector of
inputs, and w is the vector of auxiliary variables. Given a
constant nominal operating condition that satisfies

0= f(X,R,W) (5)
0 = g(X,R,W)
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Figure § Small-signal inductor current response to sinusoidal control perturbations at various frequencies, for the converter of Fig. 1 (, =489, M =0).

Response becomes nonsinusoidal above £ /10.
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we consider deviations from this operating point such that

x(t) = X + (1)
r(t) =R + F(t) . (6)
w(t) = W+ w(t)

If f, g are expanded in a multivariable Taylor series about the
nominal operating condition, we find to first order that

ﬁ == 9[ X+ g[ F+ Qﬁw

dt ox or ow
0 ~ %8z, %8p, %y

ax ar ow
where all the partial derivatives denote Jacobian matrices
evaluated at the nominal operating point. This is the
linearized model and control constraint.  Because the
nonlinear model is time-invariant with a constant nominal
solution, all the partial derivatives are constant, and the
linearized model is therefore LTI. The second equation in
(7) can be solved for W(t), and the result substituted in the
first equation to get the desired linearized state-space model.
Now consider applying this linearization method to the
state-space averaged model for current-mode control, which
has the form of the first equation in (4), with w(t) = d(1).
We see that it is the large-signal (transient) duty ratio
constraint that should be used as the second equation in (4)
and differentiated. Only after differentiation should the

Jacobians be evaluated at steady state.
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Figure 6 Small-signal inductor current response to a control perturbation
of amplitude 0.0011, at f, /2 in the boost converter of Fig. 1 (D
=04@1, = 4.89 A, M, = 0). The response is normalized to
the amplitude of the perturbation.
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Figure 7 Small-signal inductor current response to a control perturbation
of amplitude 0.0011, at 0.957,/2 in the boost converter of Fig. 1
D =04@]I = 4.89 A, M, = 0). The response is normalized
to the amplitude of the perturbation.

Consider the geometric evaluation of the duty ratio
constraint, which describes the (local, running) average
inductor current f,(t) as a function of the continuous duty
ratio d(1) and control i (t). The large-signal duty ratio
constraint is usually evaluated at the end of the n* cycle,
where the duty ratio d, equals d(t), yielding

i, =i, -MdT - md’T - md”T @

where d' = I-d. Now linearize this expression as described
above, and substitute in the proper waveform slopes for the
boost converter, namely

<

oy =28 ©)

where u(t) and v(1) are the input and output voltages,
respectively. This yields the corrected control constraint of
{4}, see Table 1 here.

However, many small-signal models [1-3,9,10] explicitly
or implicitly evaluate the large-signal duty ratio constraint at
steady state before the linearization process. Furthermore,
depending on how the incorrect steady-state constraint is
applied, they arrive at different small-signal duty ratio
constraints, Table 1. In the conventional method [9], the
steady-state constraint md = mgd’ is applied to (8) before
linearizing, yielding

ip =i, ~MdT - -mdT . (10
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Directly linearizing (10) and substituting in the relations (9)
yields the conventional constraint of [9,10]. However, if we
apply the steady-state constraint again, as is done in [2], we
find for the boost converter that

n

Substituting this relation into (10) and linearizing yields the
different duty ratio constraint of [2]. The papers [1,3] use
steady-state assumptions in yet another manner, implicitly
assuming in their constraint computation that, regardless of
the perturbation in duty cycle due to the rising part of the
waveform, the inductor current returns to its previous
minimum value by the end of the cycle. This yields yet
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Figure 8

another duty ratio constraint. These inconsistencies illustrate
the problems associated with treating steady-state relationships
as dynamic.

As it turns out, all of these constraints lead to essentially
the same small-signal LTI model predictions at low
frequencies. We offer the following explanation. The duty
ratio constraint that leads to the expression used in [4] is
derived over a certain window of length T. If the
computations are instead carried out over displaced versions
of this window, the resulting constraints vary from that given
at the top of Table 1 by a term proportional to md - md’.
Hence, the constraint used in [4] is well behaved only for
operating conditions in which all of the constraints in Table
1 yield similar results.

Bdr 4745 H:
Yi 6045 av¥ras

Inductor current spectra for sinusoidal control perturbations (f,, = 48 kHz). (A) 12 kHz (B) 18 kHz (C) 23 kHz (D) 24 kHz, constructive phasc.
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Table I Duty ratio constraints used in various current-mode contro!

models for the boost converter.

To see that the low-frequency performance characteristics
of the conventional model [9,10] and the models of [1-3] are
similar to models based on the corrected approach, consider
the plots of Figs. 10 and 11, which show the small-signal
control-to—current and control-to-output frequency responses
for the various models. To separate the issue of correct duty-
ratio constraints from the issue of high-frequency modeling
addressed in Section II, the additional high frequency
extensions proposed in [1-3] have not been incorporated.
Samples of the frequency responses determined by simulating
the system with and without a perturbation and looking at the
difference in response are also plotted. As can be seen, all
of these models yield similar results in the magnitude
response up to a decade below the switching frequency.
There are some differences in the phase responses even below
a tenth the switching frequency.

It is certainly legitimate to ask how an LTI model may be
refined to improve its prediction of the phase characteristic at
these low frequencies, where the time-varying effects noted
in Section II are not significant. For instance, including a
phase delay of w7/2 with the model from [4], in order to
capture the effect of the Zero Order Hold in Fig. 3, will lead
to phase characteristics more closely matching those
computed via simulation (indicated by the crosses in Figs.
10,11). Similarly, the high-frequency extensions proposed in
[1-3], which are again aimed at capturing the effects of
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Figure 9 Inductor current waveforms for constant-frequency current-mode
control, with relationships between gft), d(t), d,, i,(t), and i ().

sampling and reconstruction, will have beneficial effects on
capturing the phase characteristic at lower frequencies.

IV. CONCLUSION

This paper has looked at several aspects of modeling
current-mode controlled converters. It has been shown that
current-mode controlled converters become significantly time-
varying as half the switching frequency is approached. It is
concluded that averaged LTI control models are only reliable
for frequencies well below half the switching frequency, and
are not suitable for predicting subharmonic oscillations due to
ripple instabilities.

The geometric methods used to derive duty ratio
constraints have also been examined. It has been confirmed
that from a mathematical point of view, duty ratio constraints
should be based on transient waveforms. It is also shown
that both the conventional and corrected approaches are
limited in accuracy when the system deviates significantly
from steady state. This leads to similar performance of these
models for frequencies at which they can be considered
useful. Issues similar to those exposed here for current-mode
control may be expected to arise in other contexts where
refinement of averaged models is sought.
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