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Abstract— Transmission lines and their lumped approximating
networks have long been incorporated into radio-frequency
power amplifiers to improve efficiency and shape circuit
waveforms, and are beginning to perform a similar roles
in high-frequency switched-mode power electronics. Though
lumped line-simulating networks are often preferred to their
distributed exemplars for reasons of design flexibility and man-
ufacturability, the impedance peaks and nulls of such lumped
networks must be aligned in a precise, harmonic manner
to minimize loss and symmetrize converter waveforms. This
paper addresses the issue of harmonic frequency alignment in
line-simulating networks, presenting new analytic results for
predicting the impedance-minimum and -maximum frequencies
of networks in a ladder form. Two means of correcting for
the observed harmonic misalignment in practical structures
will be presented, corroborated by measurements of laminar
structures built into the thickness of printed-circuit boards.
These structures comprise inductances and capacitances whose
dimensions are largely decoupled, such that the simulated line
can be accurately analyzed and designed on a lumped basis. The
presented techniques will be placed within a power-electronics
setting by a representative application incorporating a lumped,
line-simulating network.

I. INTRODUCTION

The application of transmission lines to power electronics
is a promising technique for miniaturizing dc-dc and dc-
ac converters, and will be considered here and in a com-
plementary paper (see [1]) at the component and converter
scale. This paper will focus on component-level techniques,
presenting methods for modelling and constructing net-
works that mimic transmission lines. Such transmission-
line analogs can introduce delay into switching cells in a
manner that conveniently reduces the total amount of induc-
tance or capacitance required to realize an energy-processing
function. Such a decrease in “bulk” energy storage offers
unique implementation advantages, such as compatibility
with available laminar construction techniques, and a shift to
low-loss, air-core magnetics. Moreover, whereas reduction of
high-frequency parasitics is a major preoccupation of circuit
and component design, the delay networks considered in this
paper incorporate parasitics. Tolerance for these unavoidable

component resonances encourages faster switching and may
further decrease a converter’s energy-storage requirements.

Section II will present, as motivation for this work, the
waveform-shaping and symmetrizing properties of transmis-
sion lines that are useful in tuned power circuits. Section III
will consider the boundary between lumped and distributed
systems for line-simulating networks in ladder form, with
particular care given to the frequencies at which such net-
works’ driving-point impedance is at a local minimum or
maximum. Measurements of iterated networks — compact,
laminar structures embedded in the thickness of printed-
circuit boards — will demonstrate the predicted deviation of
impedance-extrema frequencies from harmonic coincidence.
Sections IV and V present two techniques which compensate
for these deviations and achieve more accurate harmonic
alignment of impedance peaks and nulls. The analytic and
synthetic techniques of Sections IV and V are again verified
by measurements of high-order LC structures constructed
into the thickness of printed circuit boards. Section VI
previews the application of transmission-line analogs to
high-frequency inverters, and orients the results within the
context of power-circuit miniaturization.

II. BACKGROUND

Open- and short-circuited quarter-wave transmission lines
have reactive driving-point impedances with harmonically
related maxima and minima (see Fig. 1a, and [2, Chapter
2]). These aligned peaks and nulls — whether developed
by a distributed transmission line or one of its lumped
analogs — have long been utilized to shape waveforms
and improve efficiency in radio-frequency power amplifiers
(e.g., [3, Chaper 14] and [4]–[8]). Similar applications to the
design of high-frequency switched-mode power electronics
are gradually emerging [9]–[13], and can be regarded as a
high-order extension of single-resonant techniques [11], [12]
for reducing passive-component bulk.

The waveform-shaping behavior of a transmission-line res-
onator terminated in a short circuit is clarified in Fig. 1.
With a length � and some distributed inductance (L ′) and
capacitance (C ′) per unit length, the input impedance Z in of
a lossless line is a transcendental function with an infinite
number of j-axis poles and zeros [2]. The zeros of Z in lie
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Fig. 1: Input impedance (left) of a line of length � terminated in a short circuit. When excited periodically
at a frequency equal to the principle quarter-wave resonance, the line enforces odd- and even-
harmonic symmetries in voltage and current, respectively.

at s = jων , where

ων =
νπ

2�
√

L′C′ for ν = 0, 2, 4, ... and

Zin = j

√
L′

C′ tan
(
ω�
√

L′C′
)

(1)

Impedance maxima, likewise, are located at odd multiples
(ν = 1, 3, 5, ...) of the principal quarter-wave resonance ω1.
Because the line will not collapse applied voltages at odd
harmonics of ω1,1 the voltage waveform at the input port is
half-wave symmetric for excitation periodic in T = 2π/ω1,
as depicted in Fig. 1b. At even multiples of ω1, the line draws
large currents and the terminal current is half-wave repeating
(cf. Fig. 1c) with one-half the period of the source.

Note that the V –I symmetry relations obtain even for a half-
period of effort by the source. With reference to Figure 1b,
consider the case of a line excited by a switch which closes
from 0 to π radians of the fundamental period T . When
the switch imposes a voltage waveform during the first half
of the cycle, the transmission line becomes energized so
as to impose a half-wave symmetric voltage at the input
terminal during the second half cycle. The line stores the
voltage waveform in a travelling wave along its length, which
returns delayed by one-half fundamental period and inverted,
because of the power-reflection condition at the short-circuit
termination. The applied current wave also returns, delayed
π/ω1 seconds but not inverted, so that the line attempts to
do the same work on the input network that was done on
the line in the first half of the cycle.

Particular care must be given to the harmonic coincidence of
the impedance peaks and nulls of line-simulating networks
to preserve the waveform-symmetrizing properties of their

1The line is a quarter-wave transformer of the short-circuit termina-
tion at ω = ω1, with a large impedance at that frequency and all
its odd multiples. Recall that for every additional λ/4 length of line
the driving-point impedance is inverted. In the lossless case the line
transforms the termination from a short → open → short → · · · for
successive zero → pole → zero → · · · , at each of which, successively,
the line is electrically one quarter-wavelength longer.

distributed exemplars. The next three sections present meth-
ods for achieving such harmonic alignment, and clarify the
boundary between lumped and distributed systems for a class
of LC-ladder networks of the so-called Cauer form. 2

III. ITERATED NETWORKS

A compact approximation of a transmission delay can be
constructed by cascading L-sections, as exemplified by the
3-, 4-, and 5-fold iterates of Fig. 2. In the case of such
iterated, artificial lines terminated in their characteristic
impedance, published bounds are available to guide a de-
signer in selecting the order of an approximating network
[14], [15, Chapter 5]. A designer can choose how many
iterated L-sections, and of what electrical length, need to
be concatenated for some tolerable impedance mismatch
with a distributed line. No quantitative guidelines of general
applicability, however, appear to have been published for
unmatched lines, i.e., for approximating the frequencies
of successive λ/4-wave resonances of artificial lines when
they are terminated with an open or short circuit. 3 This
unmatched case is particularly important for the filtering and
symmetrizing functions of transmission lines as applied to
power-electronics circuits.

To understand how minima and maxima in Z in shift for a
given degree of discretization in an iterated network with
a short-circuit termination, first consider the impedances of
the normalized networks of Fig. 2. As shown in the topmost
network, all inductors have a value of 1 H, and all capacitors
a value of 1 F.4 The input impedances Zin for the normalized

2Though cascades of resonators, notably, can also simulate line
impedance, we focus upon Cauer realizations because of their relative
compactness beyond the 4th order [11], [12].

3The advice that the electrical length � of component networks be shorter
than a some fraction of the smallest signal wavelength of interest is often
repeated [15], where “some fraction” is usually set somewhat arbitrarily as
the upper bound � < λ/10).

4The impedance levels and critical frequencies of the cascaded sections
can be denormalized without affecting the relative frequency relationships
among poles and zeros.
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Fig. 2: Successive diagonals of Pascal’s triangle correspond to the numerator (shaded) and denominator
(unshaded) coefficients of the input impedance of normalized, iterated L-networks. The k subscript
of the rational impedance functions (Zin = nk

dk
) corresponds to the number of iterated L-sections.

Note that the networks’ short-circuit terminations effectively remove the last L-section capacitor.

TABLE I: Tabular arrangement of impedance-function coefficients

d1 1 m = 1
1∑

i=1

d0i = 1 ←− sum of coefficients in row

n1 n = 2 1 m = 2
1∑

i=1

n0i = 1

↘
d2 n = 3 1 1 m = 3

2∑
i=1

d1i = 2

↘ . . .
n2 n = 4 1 2 m = 4

2∑
i=1

n1i = 3

↘ . . .
. . .

d3 n = 5 1 3 1 m = 5
3∑

i=1

d2i = 5

↘ . . .
. . .

n3 1 4 3 m = 6
3∑

i=1

n2i = 8

1
1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21

1 8 28 56 70

1 9 36 84
1 10 45
1 11
1

. . .
. . .

. . .
d4 1 5 6 1 m = 7

4∑
i=1

d2i = 13
. . .

. . .
n4 1 6 10 4 m = 8

4∑
i=1

n2i = 21
. . .

. . .
d5 1 7 15 10 1 m = 9

5∑
i=1

d2i = 34
. . .

n5 1 8 21 20 5 m = 10
5∑

i=1

n4i = 55

highest order ←− · · · −→ lowest order

networks are a ratio of a numerator nk (an odd polynomial
in s) and a denominator dk (an even polynomial in s) with
subscripts k equal to the number of inductors in the network.

As is evident in Table I, the numerator and denominator
coefficients of nk and dk are diagonal sequences from
Pascal’s triangle (cf. the left-justified triangle on the right
of Table I, in which the diagonals for the polynomials
in k = 3, 4 and 5 are shown in boxes). These diagonal
sequences are indexed by increasing m, beginning with m =
1 for the 0th-order polynomial, 1, topmost in the triangle.
When expressed in the staggered-order form of nk and dk,
these polynomials are known as the Fibonacci polynomials
Fm.5 The roots of the Fibonacci polynomials are derived
from hyperbolic functions in [16], though August Ferdinand
Möbius expressed the roots of collapsed-order versions of

5Fm(x) evaluated at x = 1 yields the mth Fibonacci number, as defined
by the recurrence relation Fm ≡ Fm−2 + Fm−1, where m = 3, 4, . . .
and F1 = F2 = 1

the polynomials while deriving a periodicity condition for
Möbius transforms [17]. The coefficients from the m = 11
diagonal in Table I, for instance, correspond, in Möbius’
formulation, to the polynomial:

σ5 + 9σ4 + 28σ3 + 35σ2 + 15σ + 1 = 0

which has five roots given by

σ = −4 cos2
(

kπ

m

)
= 4 cos2

(
kπ

11

)
for k = 1, 2, . . . , 5

These roots can also be expressed in terms of the roots
of unity. I.e., if r denotes any mth root of 1, then the
corresponding root σ is σ = −(1+ r)2/r. E.g., for the 11th

root of unity with angle ∠(180/11)◦,

4 cos
( π

11

)2

=
[1 + 1∠(180/11)◦]2

1∠(180/11)◦
≈ 3.6825

Pole and zero frequencies of Z in(s) can be recovered from
Möbius’ analytic roots in σ by the substitution σ = s2 =
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Conjugate pole and zero frequencies for networks with an increasing number of iterated sections
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Fig. 3: Analytical prediction of the pole and zero frequencies for iterated L-section networks, and
measurements (right) of an iterated network (Section II), mutually coupled network (Section
III), and Cauer-derived toroid (Section IV) built into the thickness of a printed-circuit board.

−ω2, from which the peak frequencies ωp are:

ωp =

√
4 cos2

(
kπ

mp

)
= 2 cos

(
kπ

mp

)
(2)

for mp odd and k = 1, . . . ,
⌊mp

2

⌋
Where �·� is the floor function. Zero frequencies, likewise,
are given by:

ωz =

√
4 cos2

(
kπ

mz

)
= 2 cos

(
kπ

mz

)
(3)

for mz even and k = 1, . . . ,
⌊

mz−1
2

⌋
=

⌊mp
2

⌋
In the Eqns. 2 and 3 above, mp is the Pascal-diagonal
m-index for the denominator (pole) polynomial, and m z

is the m-index for the numerator (zero) polynomial. Note
that mz is always one greater than mp. These results
provide analytic expressions for the pole and zero locations
of uniform lumped-element transmission lines with short-
circuit terminations. The impedance extrema for open-circuit
terminations are given by the expressions above, after ex-
changing pole and zero locations appropriately.

Fig. 3a shows peak and null frequencies for increasing num-
bers of cascaded L-sections, demonstrating the alignment of
conjugate impedance poles with the range of 2 · cos(kπ/m)
over k = 1, . . . , �m/2�. Critical frequencies crowd beneath
the cut-off frequency, departing further from harmonic coin-
cidence with increasing m. Impedance nulls, moreover, are
never equidistant between adjacent peak frequencies as in
an ideal, lossless transmission line, but are always closer to
the adjacent, lower frequency pole.

A short-circuit impedance measurement of a network that
approximates 28 iterated sections is shown in Fig. 4a. The

frequencies of local maxima and minima in driving-point
impedance are depicted by the × and ◦ markers in Figs. 4b,
matching well with the predicted pole/zero locations6 from
Eqns. 2 and 3 (the dashed line shows the locus of analytical
roots from Eqn. 2). Further details of the construction and
dimensions of of this iterated network are provided in
Section IV.

Whereas a transmission line terminated in an open or short
is capacitive and inductive over equally broad ranges of
frequency, the iterated-network Z in is capacitive over an
increasingly narrow band following each conjugate pole, so
that the phase envelope of Fig. 4a has an inductive bias
at higher frequencies. This tendency is quantified for the
measured impedance of Fig. 4a by the modal coupling de-
picted in Fig. 4c. As developed in the Appendix, the coupling
coefficient k is a measure of the separation between a modal
frequency and the zero introduced by exciting it. The k for
lumped-line modes (dashed line, Fig. 4c) can be calculated
from the theoretical pole and zero frequencies of Eqns. 2
and 3, and is lower than the coupling of distributed-line
modes (solid line). Measured coupling coefficients (triangle
markers) for a network with 28 iterated sections closely
follow the expected trend, and quantifies the uneven spacing
of pole and zero frequencies observed in Fig. 4a. Methods of
improving both harmonic coincidence (Fig. 4b) and coupling
(Fig. 4c) to approximate the impedance of a distributed line
will be considered in Sections IV and V.

6Fig. 3 shows all frequencies as a deviation Δω from an integral multiple
of the fundamental resonance ω1, e.g., Δω/2ω1 for the first zero, and
Δω/3ω1 for the 2nd impedance peak.
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(a) Measured Zin of 30 iterated L-sections
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(b) Measured critical frequencies of an iterated
network, compared to a transmission line
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(c) Measured modal coupling of an iterated
network, compared to a transmission line
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Fig. 4: Measured input impedance of 30 iterated, coupled L-sections, showing the trend in mode coupling
and the trends in pole and zero frequencies.

IV. ITERATED NETWORK WITH MUTUAL INDUCTANCES

The first method of compensating for the critical-frequency
shortfall observed in Section III is to introduce adjacent-
section mutual inductance into the iterated networks of
Fig. 2. Because the calculation of mutual inductances de-
pends on a precise specification of geometry, this section
will begin by detailing the structure through which we now
propose to transfer energy by both conduction current and
mutual flux. This specification will provide an opportunity
to discuss how the magnetically uncoupled measurements
of Fig. 4a were made. The inductance matrices introduced
in this section were calculated using FastHenry [18], a

freely available program which extracts inductances and
resistances of 3-dimensional conductor geometries on a qua-
sistatic basis. The section will conclude with the impedance
measurement of an magnetically coupled network, with pole
and zero locations summarized in the manner of Fig. 4b.

The effect of mutual inductances will be introduced by the
structure at the top of Fig. 5, from which the the impedance
data of Fig. 4a were collected. The toroidal structure com-
prises 30 section inductances of one turn apiece (L1–L30)
that are connected in series and tapped at interior nodes with
29 equal capacitances (C1–C29). The total tap capacitance
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L1 L2 L3 Lk

C1 C2 Ck−1
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0 nH
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(d) L matrix for toroid with no tap extensionsL1 + M12 L2 + M12 + M23 L3 + M23 + M34 Lk−2 + Mk−3,k−2
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LC1 LC2
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inductance
LC1 (e) L matrix for gapped toroid with tap extensions

0 nH

5 nH

10 nH

15 nH

Fig. 5: For a network with adjacent-section mutual coupling (upper schematic), Δ-Y circuit transforma-
tions reflect the mutual terms as negative inductances in the tap paths.

is 915 pF and the total low-frequency self-inductance of the
toroid is 355 nH. The structure has the dimensions shown
in the top- and bottom-copper masks (reproduced in Fig. 5),
and is built on two-sided 62-mil printed circuit board. A
mylar film is applied over the tap-capacitor plates, with
1-mil adhesive copper foil forming the common node for
the taps (a capacitance of 157.6 pF/in2 was measured for
this method of construction). The structures was designed
for a characteristic impedance of 20 Ω and a λ/4 mode
at 13.56 MHz. Z0 = 19.7 Ω was measured, with the first
quarter-wave mode at 13.41 MHz.

Though a fully populated inductance matrix would be most
accurate for modelling turn-to-turn coupling in a toroid,
a suitable approximation can be made by only consider-
ing adjacent mutual terms (cf. the M12, M23, . . . ,Mk−1,k

couplings in the upper schematic of Fig. 5). Because of
the large flux leakage in a nonpermeable printed circuit,
the mutual inductances between any two ports (where a
port is two adjacent tap terminals) falls off rapidly with
distance around the toroid. For the structure at the top of
Fig. 5, the single-turn self-inductance is 9.97 nH. 7 The
mutual inductances decrease rapidly, from 1.47 nH between

7There are actually two types of turn, which extend different amounts
toward the toroid’s center and have slightly different self inductances. These
different turns were designed for efficient packing of vias in the center
rosette of the structure, so that each turn was able to accommodate 3 vias
in parallel for each traverse of the board. This construction technique lowers
DC and AC resistance, and was included in the analysis.

adjacent turns, to 0.35 nH, 0.12 nH, . . . moving clockwise or
counterclockwise along the toroid. Mutual values eventually
become small and negative when the turn-sections have
antiparallel axes at opposite ends of the toroid.

The lower network in Fig. 5 demonstrates, by means of T-
network transformations of the largest mutual terms, how
inductance in tap leads offsets the mutual induction between
adjacent meshes and diagonalizes the overall L-matrix. In
the structure measured in Fig. 4a, 20×80-mil long inductor-
traces in series with the capacitor branches cancel 1.47 nH
of off-diagonal inductance to approximate the uncoupled,
iterated meshes of Fig. 2. Magnetic coupling between input
and output was also reduced in the measured structure by
introducing a gap of 2 turns in the full toroid. The lower
tableau in Fig. 5 schematically depicts the inductance matrix
for this case, in which the inductances in the upper right
and lower left of the L matrix have been eliminated by
introducing a gap.

By shortening the length of the tap leads, a designer can
offset the sub-coincident alignment of critical frequencies
observed in an iterated LC network (cf. the dashed locus
in Fig. 4b). The effect of this change in tap inductance can
be explained by a frequency-dependent cancellation of the
capacitance loading the toroid. Fig. 6a presents the measured
critical frequencies of a toroid without tap extensions —
but with the same dimensions and tap capacitances — as
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(a) Measurements of critical frequencies using
1st frequency-correction method: adjacent mutual inductance
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(c) Coupling of undiagonalized iterated-network modes
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Fig. 6: Summary of input-impedance measurement for 30 iterated, L-sections, with no tap extensions and
a roughly tri-diagonal inductance matrix.

the toroid in Section III. Compared to the diagonalized
critical frequencies, which are shown in grey for comparison,
the impedance peaks of the “undiagonalized” toroid are
more nearly harmonic-coincident over a broader range of
frequencies. The negative mutual inductance in the tap paths
(-1.47 nH) is an impedance with capacitive phase that
increase with frequency like an inductance. This negative
inductance cancels more and more loading capacitance at
higher frequencies, just compensating for the decrease in
harmonic alignment expected from the iterated network. For
the 20 Ω toroid measured here, the -1.5 nH tap inductance
Lt is in series with Ct = 30.5 pF tap capacitance. An
equivalent, frequency-dependent capacitance C ′ for both
elements is given by the series combination

− 1
ωC′ = −ωLt − 1

ωCt
=⇒ C′ =

Ct

ω2LtCt + 1
I.e., the effective loading capacitance has a knee frequency
at (LtCt)

−1/2 rad/s, beyond which it drops at 40 dB/decade.
The given Lt and Ct resonate at 750 MHz, but still affect
the critical frequencies by a percent or more a decade below
the LC corner. The 13th critical frequency, for instance, is
a pole whose modal capacitance is decreased by the factor

1

1 +
(

176
750

)2 = 0.947

corresponding to a 2.7% increase in frequency (a 3.8%
change was observed). As in Section III, Impedance zeros
still lie closer to the neighboring, low-frequency pole than
the higher-frequency neighbor. The normalized zero fre-
quencies are below 0.97, and the impedance-phase envelope
is still inductive. Modal coupling falls below the desired
transmission-line locus, and has shifted by less than k =
0.03 from the values in Fig. 4c.

Though capacitance offset improves harmonic alignment
of higher frequencies, the alignment of the lowest critical
frequencies is of the greatest significance for enforcing wave-
form symmetries. These low-frequency poles and zeros are

hardly shifted by adjusting the tap inductances LC1–LC29 .
As with the diagonalized structure of Section III, moreover,
low modal coupling prevents pole and zero frequencies from
aligning simultaneously at harmonics of the first quarter-
wave resonance.

V. CAUER-SYNTHESIZED NETWORK

From the measurements presented in Figs. 4b and Fig. 6,
a salient problem of iterated networks the sub-coincident
alignment of zero frequencies when impedance poles are
near the desired harmonic frequencies. Considered sepa-
rately, the poles and zeros of iterated networks have good
harmonic alignment for little design effort, less than ±1%
over the first 4 critical frequencies. Incidence is poorer (about
±3% of frequency) for poles and zeros considered jointly,
and a designer may need to consider more iterated LC
divisions — possibly with a larger overall size — to preserve
the filtering and symmetrizing functions of the lumped line.

A means of correcting the sub-coincident alignment of both
poles and zeros without resorting to higher-order networks
is to abandon uniform sections in favor of LC-ladder el-
ements designed using Cauer synthesis. Cauer-derived net-
works preserve the basic form shown in Fig. 2, but each
series-path inductor and shunt-path capacitance is specified
independently to match the impedance of a lossless line
over some desired bandwidth. The mathematics of synthesis
is described elsewhere [11], [19], and synthesized L and
C values are assumed to be given for purposes of this
discussion.

The LC ladder values computed from Cauer synthesis can be
realized with lumped inductances and capacitances to form
a transmission-line approximating network. Of more interest
than this straightforward approach is a technique to realize
a desired Cauer network with the same family of laminar
toroids used in the measurements of Sections III and IV. To
implement an “integrated” Cauer network with this planar
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Fig. 7: A series connection of turns condenses the inductance matrix L of the base toroid into a lower-order
network of coupled inductors (8 are shown).

construction technique, tap points can be placed around the
base toroid so that the turn-inductances between taps approx-
imate Cauer-synthesized values. Synthesized capacitances
can now be added around the periphery of the toroid to
complete the Cauer-derived network. The inductance matrix
describing the complete turn-by-turn magnetic coupling of
the toroid is related to a new, condensed inductance matrix
by a the block-sum procedure depicted in Fig. 7. The new
inductance matrix is described as “condensed” because the
gathering of turns yields an equivalent network of lower
order than the densely tapped structure depicted at the top
Fig. 5.

Referring to Fig. 7, the self-inductance of a group of n turns
in a series equals the appropriate n×n block sum of the full,
turn-by-turn inductance matrix. The process of condensing
the full L-matrix by progressive block sums is illustrated
by the partitioned matrices at the top right of the figure.
Primed values are self and mutual terms already condensed
by summing, and the three next turns along the toroid — for
this example of ladder development — are to be combined
into one section inductance. The condensed self-inductance
and mutual terms are

where L′
33 =

5∑
i=3

5∑
j=3

Lij (4)

and L′′
j3 = L′′

3j =
5∑

i=3

L′
ij for j < 3

and L′
j3 = L′

3j =
5∑

i=3

Lij for j > 5

where the lower-right submatrix remains undisturbed.

The series connection of three turns shown in Fig. 7 can
be expressed algebraically by noting that the gathered turns
have a total voltage drop equal to the sum of three individual
port voltages. The series connection introduces a transforma-

tion M between the n original port voltages v, and a new
set of n− 2 port voltages v ′:

v′ = Mv =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ik 0 0

0 1 1 1 0

0 0 In−k−3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1

...
vk+1
vk+2
vk+3

...
vn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

The corresponding current transformation imposes an equal-
ity condition between connected terminals, so that i =
MTi′, where i′ the vector of new port currents. Under this
transformation, the condensed inductance matrix L ′ is found
by substitution to be MLM T:

v = sLi =⇒ v′ = sMLMTi′ = sL′i′

Though adjacent ports are shown in this example, with only
one gathering of turns, the basic structure of M can be
extended to any set of simultaneous connections. As one
would expect form this turn-gathering procedure, the block
sum of the condensed inductance matrix is identical to the
block sum of the original 30× 30 FastHenry matrix.

The normalized inductances and capacitances synthesized to
match the first 20 non-zero critical frequencies of a lossless
transmission line are shown in chart of Fig. 8.8 The problem
is to apportion toroid turns such that the new groupings have
inductance-ratios that approximate the proportions in Fig. 8.

8Note that while C1 is used to normalize subsequent, larger capacitances,
L2 is used as the basis for inductance normalization. L2 is representative
of the relatively constant inductance along the the artificial line’s length,
and L2 and C1 are close to the L and C values that would be necessary
in an iterated ladder with the same number of meshes, and with the
same λ/4 resonance. For the Cauer synthesis problem at hand, the first
section inductance L1 always approaches a value 1/2 times as large as the
second section, in the limit of many meshes. This initial half-section has
a higher cutoff frequency than the full LC of the corresponding iterated
line. Such half-sections appear frequently in more ad-hoc approximations
of transmission-line impedance, cf. [15, Section 5.7.3].
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Fig. 8: Cauer-synthesized L and C values for a 11-section ladder designed to match 21 transmission-
line non-zero critical frequencies. Below, flowchart of an iterative method for determining tap
locations along a toroid. The nk are the number of turns in each Cauer-synthesized section with
self-inductance L′

kk .

For the 30-turn, 20 Ω toroid used in previous examples,
the taps start off closely spaced at the input node, with
turns per section nk increasing counter clockwise toward
the termination:

nk = 1, 2 , 2 , 2 , 2 , 2 , 2 , 2 , 3 , 4 , 8 turns per section

The corresponding self-inductances Lk of the condensed
network likewise increase as the block-sums of 11 nk × nk

inductance submatrices:

Lk = 10.0, 22.1, 22.1, 22.1, 22.1, 22.1,

22.1, 22.1, 35.8, 48.9, 103.2 nH

The discrepancy between the sum of these self inductance
(353.5 nH) and the total toroidal self inductance (355 nH
measured, 366 nH calculated) is due to adjacent-section
mutual entries.

As in the case of adjacent-inductor coupling discussed in
Section IV, mutual inductances M in an immediate off-
diagonal add to the self-inductances of the sections they
couple, and appear as an impedance −sM in the tap
between coupled sections. These mutual terms are of the
order of 10% of the tap-to-tap self-inductances, and must
be taken into account for accurate pole-zero placement in
the Cauer-derived toroid. Assuming that the condensed L
matrix is diagonalized with tap extensions (as detailed in
Section IV) we have only to consider the contribution of
neighboring mutuals to any given condensed section L ′

k =
L′

kk + L′
k,k−1 + L′

k,k+1 (i.e., the inductances as designed in

Fig.V). The progressive grouping of turns along the toroid
represented by Eqns. 4 and 5, however, cannot explicitly
account for the mutual inductance of condensed sections
yet to be designed. The iterated method summarized in
Fig. V circumvents this difficulty by regrouping turns for
each section k once the section k + 1 is designed, refining
the estimate of condensed section-inductance Lk’ with a
better approximation for the new mutual terms. The initial
guess for Lk’ is based upon the forward mutual inductance
to a block with an identical number of turns nk. The Cauer-
derived network measured in Fig. 9 was designed using this
method.

Fig. 9 shows the poles and zeros of measured impedance
for a Cauer-synthesized toroid based upon the 20 Ω layout
of Figure 5, with diagonalizing tap inductances and 11
condensed sections. Though poles and zeros are both in the
vicinity of harmonic coincidence, their location seems much
more uncertain (±3%) than in the iterated networks. The
alignment of the lowest frequency poles and zeros is notably
worse than the in the iterated networks (cf. Figs. 4b and 6),
where better alignment was achieved with less design effort.
Note that overall harmonic alignment (i.e., considering poles
and zeros together) is not appreciably worse than in the
iterated cases.

Critical-frequency alignment improves dramatically when
pole and zero frequencies are compared, not to harmonically
aligned values, but to the values expected after the process of
turns gathering outlined previously in this Section. Because
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(a) Measurements of critical frequencies using
2nd frequency-correction method: Cauer synthesis
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Fig. 9: Poles and zeros of the measured impedance of a Cauer-derived toroid, based upon a 30-turn
gapped toroid. In the left plot, the measured critical frequencies are normalized to the desired
transmission-line locus; right, the frequencies are normalized to expectations from the synthesis
model.

of the discrete choices for section-inductance available at
any given point in the network realization, the continuously
increasing L and C values (typified by Fig. V) can at best be
approximated. Normalizing measured poles and zeros to the
frequencies computed from the approximated Cauer network
yields the alignment depicted in Fig 9b: ±1% alignment
of poles and zeros over a broad frequency range, with
tighter coincidence when the first 5 or 6 critical frequencies
are considered alone. This result is a strong endorsement
for the accuracy of the inductance matrix computed with
FastHenry. Note that stray capacitance (5 pF per tap in
addition to the parallel-plate value, as layed out in copper)
and lead inductance (10 nH lead inductance in series with
the first section) were considered when predicting the critical
frequencies for Fig 9b.

VI. APPLICATIONS

Power-electronics applications of the transmission-line
analogs explored in this paper are treated in an adjunct
paper [1]. To place this work within a useful context,
however, consider the schematic of Fig. 10, in which the
dashed box around the lumped transmission line replaces
the input choke of a Class E inverter. In the Introduction, it
was mentioned that transmission-line techniques can reduce
the total amount of inductance or capacitance required to
realize an energy-processing function, which in turn can
have important manufacturing benefits. For the case at hand,
the Class E input choke (replaced in Fig. 10) comprises
an air-core solenoid, 21 turns of 18 gauge wire, wound
on a plastic former with a 26 mm diameter. Significant
for manufacturability, the transmission-analog replacement
is constructed directly into the thickness of a 4-layer,
2 oz. copper PCB. A 59 mil core was selected for the
magnetic thickness dimension, with capacitors constructed
across outer prepreg layers and an overall outer diameter
of 4.4 inches. The transmission-line input network is of the
iterated type analyzed in Section III, and is constructed with

only 207 nH of planar inductance and about 500 pF of
inter-layer capacitance. Compare these passive values with
8.02 μH inductance for the Class E design. The inverter
with transmission line circulates waveforms internally to
accomplish its power conversion function, exchanging large-
valued blocking components for high-Q resonant elements.
This tradeoff will be explored in the adjunct paper, as well
as the reduced stresses attending the natural square-wave
switching introduced by the transmission-line impedance
(shown for an previously published case in Fig. 10).

VII. CONCLUSION

This paper has considered critical-frequency alignment (see
Table II) of iterated and Cauer-derived transmission-line
analogs with planar, air-core magnetics. For the iterated
network of Sections III and IV, a relation between the
critical frequencies of cascaded LC sections and the roots
of Fibonacci polynomials has been presented. This result
quantifies the transition between a distributed line and its
lumped ladder approximations, and appears to be new in
the literature. The Cauer-derived line-simulating network,
with non-uniform placement of taps in approximation of the
L and C values calculated by Cauer synthesis, exhibited
critical frequencies matching the lumped-model prediction
within ±1%. Though the Cauer-derived network had poorer
harmonic coincidence that the iterated networks, the preci-
sion of the MQS model allows this shortfall to be overcome
by design. Moreover, since the Cauer network realizes a
specified driving-point reactance, it alone — of the three
options presented — permits the simultaneous harmonic
alignment of poles and zeros necessary for the symmetrizing
function of transmission networks.
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Fig. 10: Comparison of drain-voltage waveforms for a 82 MHz class-E inverter with an inverter
incorporating a transmission-line analog (a so-called Class Φ inverter).

TABLE II: Summary of synthesis methods for transmission-line analogs

Structure Harmonic alignment Coupling Tolerance

Iterated
pole and zero frequencies

decrease as cos
`

2k
m

´ lower at high frequencies ±3.0% to the 5th pole;
±1% poles alone

Tri-diagonal
harmonic pole or zero

alignment lower at high frequencies ±2.4% to the 5th pole;
±1% poles alone

Cauer
harmonic pole and zero

alignment
more even pole-zero

spacing
±3.0%, or ±1% within
prediction, poles+zeros

APPENDIX

Whenever driving effort excites some mode, whether native
to the energy-domain of excitation or not, the coupling
coefficient k represents the extent of energy conversion, and
is defined over a cycle as

k2 =

(
energy delivered

to load

)
+

(
energy stored and

recovered from load

)
total energy delivered

Consider a simple case of energy storage shown in Fig. 11a:
a mass slides on a frictionless plane, and is tied to a
mechanical ground through a spring k1. A force with infinite
authority — i.e., no source impedance — stretches k1 and
stores energy in it. All of the energy delivered from the
source stretches the spring, and the drive is perfectly coupled
to k1. For this case of zero source impedance, the coupling
coefficient k ≡ 1.

Mode excitation is rarely as simple as the case pictured in

F m

k1

(a)

F m

k1k2

(b)

L0

L

C

(c) Electrical analog of (b)

Fig. 11: A simple example of coupling

Impedance of network in Fig. 11c

|Z
|(Ω

)

Frequency

jω(L0 + L)

jωL0

ωp ωz

Fig. 12: Explanation of coupling in terms of pole/zero separation

Fig. 11a. Usually, energy stored in k1 requires that some
energy be delivered to the exciting structure, as shown in
Fig. 11b. At frequencies far below resonance, the oscillator
is compliance-dominated (i.e., the energy stored in m is
negligible) and F stores energy in k1 by stretching k2. If
k2 is stiff, F is strongly coupled to k1; if k2 is compliant,
it is stretched considerably, k1 is relatively undisturbed, and
the coupling is weak. k2 in this case can be expressed as
the fraction of total energy delivered to k1:

k2 =
energy stored in k1

energy stored in k1 + energy stored in k2

In laboratory practice, the frequency separation between res-
onance and antiresonance (i.e., between a modal resonance
and the zero introduced by exciting it) is a measure of
the degree of energy coupling. To understand this useful
relationship, consider the impedance of Fig. 12a for the
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network in Fig. 11c:

Z = jωL0 − j

ωC − 1
ωL

= jω

[
Lo − L

ω2LC − 1

]

= jω · ω
2L0LC − L0 − L

ω2LC − 1
ωp and ωz from Fig. 12a are found by setting numerator and
denominator to zero and solving for frequency, from which:

ωp =

√
1

LC
and ωz =

√
1

L0‖L · C =
√

1
LC

+
1

L0C

The ratio ω2
z/ω2

p bears a useful relationship to k2, and can
be expressed as

ω2
z

ω2
p

=
L + L0

L0
since

ω2
z

ω2
p

− 1 =
L

L0

By the energy definition of coupling coefficient, and for
some applied current i in the low-frequency, inductance-
dominated regime,

k2 =
1
2Li2

1
2Li2 + 1

2L0i2
=

L

L0 + L

which can in turn be related to the ratio ω 2
z/ω2

p:

1− k2 =
L0

L + L0
=⇒ k2 = 1− ω2

p

ω2
z

(6)

Using the gross pole-zero coincidence approximation ω z +
ωp ≈ 2ωz,

k2 =
(ωz + ωp)(ωz − ωp)

ω2
z

≈ 2 · ωz − ωp

ωz
(7)

While Eqn. 6 precisely determines k from measured ω z

and ωp, Eqn. 7 affords the insight that pole-zero spacing
increases linearly with increasing k, to a better approxi-
mation as ωz − ωp is small with respect to either critical
frequency. We can apply this single-resonant treatment of
coupling to cascaded oscillators, as long as we can ignore
the impedances of neighboring intertia- or compliance-
dominated resonators, excited away from their tuned fre-
quencies. This approximation, and the others of this sec-
tion, are common practice within the transducer field [20,
Section 4.8], and are a convenient means of comparing the
alignment of adjacent poles and zeros.
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