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Abstract— Capacitor parasitic inductance often limits the high-
frequency performance of Electromagnetic Interference (EMI)
filters in both common- and differential-mode filtering domains.
However, these limitations can be overcome through the use
of specially-coupled magnetic windings that effectively nullify
the capacitor parasitic inductance. This document explores the
use of a single coupled magnetic winding to provide inductance
compensation for multiple capacitors (e.g. both differential- and
common-mode capacitors) simultaneously, reducing the number
of coils previously required. The substantial advantages of this
method are illustrated both in a proof-of-concept test circuit and
in an improved version of an existing EMI filter. The coupling
between multiple inductance compensation windings in a single
filter enclosure is also investigated.

I. INTRODUCTION

Electromagnetic interference (EMI) filters are an important
part of many types of electrical equipment, and they play a
critical role in meeting requirements for device compatibility.
The size and performance of these filters are often limited by
their component parasitics, such as the equivalent series in-
ductance of capacitors and the equivalent parallel capacitance
of inductors [1]–[12]. These limitations have generated recent
interest in methods for compensating parasitics to increase
filter performance [5]–[12]. For example, as shown in [5]–[7],
coupled magnetic windings can be used to cancel the effects of
capacitor parasitic inductance. Inductance cancellation wind-
ings can be used to reduce the filter volume and cost and/or
increase its attenuation performance.

Conventionally, inductance cancellation windings have only
been used with a single capacitor. In a filter designed for
both common- and differential-mode filtering, this requires a
number of windings to be used to compensate all capacitors.
The simple EMI filter in Fig. 1 contains three capacitors: two
line-to-common, and one line-to-line.

The goal of this document is to introduce the use of a single
coupled magnetic winding to compensate for the effects of
the parasitic inductance of two discrete capacitors, thereby
saving precious space and added cost. Section II outlines
the motivation for applying this concept to EMI filters, and
demonstrates its application in experimental test cases. Sec-
tion III follows with an application of the method to improve

an existing EMI filter. Section IV provides an analytic basis
for the observed performance improvements, and Section V
concludes the paper.

II. MULTIPLE ELEMENT INDUCTANCE COMPENSATION

A. Motivation
To understand why the use of a single magnetic winding

to compensate for parasitics of two capacitors is of particular
value in EMI filtering, consider the structure and operation
of an EMI filter. Fig. 1 shows the basic structure of an
EMI filter designed to attenuate both common-mode and
differential-mode signals, along with representative source and
load networks for performance evaluation. This circuit can
be analyzed by separating its common-mode and differential-
mode responses and treating these equivalent circuits as if they
were independent [2]. The common- and differential-mode
equivalent circuits are shown in Fig. 2.
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Fig. 1. Simple EMI filter circuit shown with representative source and
load networks for performance evaluation. Some parasitic elements (such as
capacitor equivalent series inductance) are not shown explicitly.

Now, if the circuit of Fig. 1 is augmented with inductance
cancellation coils for each capacitor, the circuit in Fig. 4 is
generated. In this new figure, the differential capacitor CX is
fitted with two inductance cancellation coils instead of only
one to preserve circuit symmetry. Past work [5] has shown
this to be as effective as a single coil, and Fig. 3 shows a
photograph of this where the inductance cancellation windings
are fabricated on a PCB.

It is desirable to implement the cancellation windings in
a balanced fashion to avoid inserting an unbalanced circuit
element within the otherwise well-balanced system. Without
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Fig. 2. Models for the simple EMI Filter circuit of Fig. 1, decomposed into
common- and differential-mode portions.

Fig. 3. Test circuit with balanced inductance cancellation windings im-
plemented in the printed circuit board. Performance of this filter has been
previously shown [5].

balancing the series inductances on both sides of the capacitor,
a cross coupling between the differential and common-mode
signal sources would result. By avoiding this coupling, the
common- and differential-mode circuit equivalents remain
straightforward, as illustrated in Figs. 5(a) and 5(b).
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Fig. 4. Simple EMI Filter circuit from Fig. 1 with balanced inductance
cancellation of each capacitor.

As shown in Fig. 4, the construction of an EMI filter
with full, balanced inductance cancellation would require four
magnetically coupled windings when constructed using the
previously established method. These windings occupy addi-
tional space within the filter, and if placed in close proximity
may exhibit secondary effects from magnetic coupling, com-
plicating the design. The effects of coupling are investigated
more thoroughly in Section II-C. Given these limitations,
it would be a considerable improvement if the number of
required windings could be reduced by utilizing a single
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Fig. 5. Simple EMI Filter circuit with balanced inductance cancellation of
each capacitor, decomposed into common- and differential-modes.

winding to provide appropriate inductance compensation for
two capacitors.

B. Implementation
To show experimentally that the use of a single inductance

cancellation coil for two capacitors is feasible, a simple test fil-
ter was created with a planar winding mounted with EMI filter
capacitors inside a shielded enclosure. Fig. 6 shows the filter
along with the two Panasonic ECK-ATS472ME6 4700pF Y2
class ceramic capacitors used. This test filter does not directly
examine common- and differential-mode testing, however it
does provide a straightforward example how a single coil can
support the compensation of inductance for two capacitors.
A dimensioned line-art drawing of the coil, which was cut
using an OMAX abrasive-jet cutter from a single piece of 1mm
thick copper, is shown in Fig. 7. Based on simulation results
from FastHenry [13], the coil itself has a maximum series
inductance of 393.0nH, and a maximum equivalent shunt-
path inductance of -63.2nH when used for single element
inductance cancellation (in the magnetic winding T model).
It should be noted that this coil was intentionally designed to
be far over-sized for the amount of cancellation required; this
was to allow for maximum flexibility in testing.

The procedure outlined here was developed for tuning the
filter response of the two capacitors, and is one way a high
performance filter response can be determined. Initially, the
connection of capacitor C1 is tuned to optimally cancel its
parasitic inductance. This can be done by adjusting the con-
nection point of the capacitor on the winding while observing
the filter attenuation (e.g. with a network analyzer), and/or
using methods associated with previously described techniques
in [6]. Once its optimal position is found, the position of the
capacitor is fixed. Following this, the connection of capacitor
C2 is tuned (with capacitor C1 in place) to find an optimal
filter response. This gives one possible combination of capac-
itor locations on the coupled winding that results in a high
performance filter characteristic.

Experimental results for this test system are shown in Fig. 8,
with data taken from an Agilent 4395A network analyzer
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Fig. 6. Test filter for inductance compensation of two Panasonic ECK-
ATS472ME6 4700pF ceramic capacitors using a single magnetic winding.

24mm

24mm

0.6mm
1.2mm

Fig. 7. Illustration of the planar winding used in the test filters of Section II,
fabricated from 1mm thick copper. The total series-path inductance based on
simulation is 393.0nH, and the maximum equivalent shunt-path inductance
for a single element is -63.2nH (in the magnetic winding T model).

which provides 50Ω source and load impedances. Insertion
gain measurements were made in accordance with those used
to evaluate inductance cancellation performance in [5], [6] to
allow for direct performance comparison. When tuning the
response with only C1, two measurements were taken for
comparison: one with the capacitor connected directly at the
input (source-side) terminal providing no cancellation, and one
where the capacitor was connected to the cancellation coil
at a location where the output response was optimal. The
same approach was taken when tuning the response for the
combination of C1 and C2: C2 was connected either directly at
the filter output (load-side) terminal or at a position optimizing
the filter response with both capacitors.

The characterization results of the filter attenuation perfor-
mance clearly show a dramatic improvement (as much as 35dB
at high frequency) from the case where no compensation is
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Fig. 8. Measured results from the test filter in Fig. 6 showing the performance
of multiple-element inductance compensation.

provided (Both Not Cancelled) to the case where inductance
compensation is provided for both capacitors (Both Can-
celled). These results demonstrate that a single coupled mag-
netic winding can be used to provide inductance compensation
for two capacitors, with dramatic performance improvement at
high frequencies.

C. Coupling of Multiple Windings
When physically placing multiple magnetic windings in

close proximity, linked magnetic flux between the windings
can affect the predicted performance in various ways [8].
Thus, the implementation of multiple cancellation windings in
a single filter may affect the inductance cancellation and filter
performance. Here the effects of mutual coupling are explored
when two coils are used to provide balanced inductance can-
cellation for both common- and differential-mode capacitors.

Fig. 9. Filter for investigation of common- and differential-mode coupling
between inductance compensation windings.

Two additional filters (using the same windings shown in
Fig. 7) were created to test two coil configurations having
different magnetic coupling directions. In addition to a pair of
line-to-ground (Y) capacitors (Panasonic ECK-ATS472ME6)
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for common-mode filtering, these test filters incorporate a
Rubycon 250MMCA334KUV class X2 line-to-line capacitor
for differential-mode filtering. Fig. 9 is a photo of one of the
filters, and shows its internal layout. Figs. 10 and 11 show the
filter configurations and illustrate the difference between the
two winding orientations.

Windings placed in the same direction each throw flux in a
way which opposes the flux of its paired winding for common-
mode currents, reducing each winding’s effective inductance.
In the case of the windings oriented in the opposite direction,
the flux from each winding is reinforced by the other for
common-mode currents, providing a coupling direction like
that of a common-mode choke, and increasing each winding’s
effective inductance.
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Fig. 10. Two orientations of coupled inductance compensation coils. The
coils are of the type shown in Fig. 7. CY1 and CY2 are Panasonic ECK-
ATS472ME6, CX1 is a Rubycon 250MMCA334KUV. The two circuits only
differ with respect to mutual coupling among the coils.
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Fig. 11. Flux patterns for common-mode operation of the two magnetic
winding configurations of Fig. 10. Windings oriented in the same direction
generate flux in a way which opposes the flux of the paired winding for
common-mode currents. Windings oriented in the opposite direction generate
fluxes which reinforce each other, providing a coupling direction like that of
a common-mode choke.

The tuning procedure used here is similar to the one used
in the two-capacitor case in Section II-B. Initially, the con-
nections of capacitors CY1 and CY2 are tuned simultaneously
in the common-mode case to compensate for their parasitic
inductances (while retaining a balanced configuration). Once
the optimal positions are found, the positions of the capacitors
are fixed. Following this, the capacitor CX1 is tuned in the
differential-mode case by moving its connections on both coils
symmetrically to find an optimal output response. Tuning is
carried out in this order because ideally the addition of the
differential-mode capacitor does not affect the common-mode
response, while the reverse would not necessarily be true.

The experimental setup for calibration and measurement of
the common- and differential-mode filter performances are
taken from [14], with signal generation and measurement
performed by the same Agilent 4395A Network Analyzer

as in Section II-B, with Mini-Circuits 180◦ power splitters
(models ZSCJ-2-1 and ZSCJ-2-2) for dividing its output into
differential signals, and custom-made common-mode splitters.
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Fig. 12. Measured results from the coupled inductance compensation winding
orientations of Fig 10, including both common-mode (CM) and differential-
mode (DM) measurements.

In both winding configurations the target frequency for
optimization was 30MHz, with measurements shown up to
40MHz. The two orientations possess similar optimized fil-
tration performance, seen in the thicker traces of Fig. 12.
The thinner traces in show additional measurements from
intermediate steps in the tuning process.

The results show that in both winding orientations an equiv-
alent inductance compensation improvement can be achieved
for both the common- and differential-modes. This allows
the orientation of the windings to be selected based on other
factors (e.g. based on magnetic coupling with more dominant
circuit parasitics). While the winding orientation does not
influence the final optimized response in these filters, how
each winding orientation achieves this optimum is slightly
different. In Fig. 13 the connection locations for the filter
capacitors are shown, corresponding to the optimal common-
and differential-mode filter response from Fig. 12.

Due to the coupling in the common-mode, the connection
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Fig. 13. Connection locations of capacitors corresponding to the results in
Fig. 12. Only one winding of each pair is shown, the connections made to the
other winding are symmetric. X represents the connection location of CX1,
Y represents the corresponding CYn connection location for that winding, I
is connected to the input of the filter, and O represents the connection to the
filter output.

for the CYn capacitor was closer to an end terminal on
the winding in the opposite direction orientation than in the
same direction orientation. Effectively, in the common-mode,
the opposite direction orientation has a marginally higher
inductance-per-turn than the same direction orientation, and
thus requires a slightly reduced number of turns to achieve
the same performance.

Even with the the windings in close proximity, the effects of
magnetic coupling on the inductance compensation are mini-
mal. In more extreme cases where the coupling is significantly
higher, the observed effects may become more pronounced.
Even in this case, however, an equivalent performance should
be achievable given properly sized windings.

III. APPLICATION TO COMMERCIAL EMI FILTER

Having shown in the previous section that a single induc-
tance cancellation winding can be used with two capacitors to
improve filtration performance, and that the coupling orienta-
tion of multiple windings in a single filter does not adversely
affect potential inductance compensation, the use of multiple
element inductance compensation in the context of common-
and differential-mode EMI filter is examined. A commercially-
available filter is used as a starting point.

Figs. 14(a) and 14(b) show the schematic and physical views
of the filter, which is rated for up to 250 volts and 25 amps of
50/60Hz alternating current. The large (15µH) series inductors
L11 and L12 are particularly bulky, heavy, and expensive
components of the commercial filter, and it would be desirable
to eliminate them provided that filter performance is preserved.
The series inductors were removed to provide working space
for installing the inductance cancellation windings, and to
provide an opportunity to offset their removal through use of
the much smaller cancellation windings. Figs. 15(a) and 15(b)
show the modified schematic and physical layout of the filter
with the inductance cancellation windings installed. Addi-
tionally, Fig. 16 shows the folded design of the inductance
cancellation coil used in this filter. As with the previous coil
in Fig. 7, Fig 16 was cut with an abrasive-jet cutter, using
2mm thick copper for enhanced current carrying capacity.
The flat winding structure is folded at the center of its
longest side to form a square one-piece two-layer winding

with Mylar tape used as insulation between the layers. Based
on simulation results, the coil is estimated to have a series
inductance of 288.3nH, and a maximum equivalent shunt-
path inductance of -81.2nH when used for single element
inductance cancellation (in the magnetic winding T model).
As in the previous test filters, the coil is purposefully over-
designed for the required inductance cancellation to allow for
additional design flexibility and testing.

PSfrag replacements

Vc Vd

2

Vd

2

L11

L12

CY11

CY12

CX1 CX2

CY21

CY22

(a) Schematic

(b) Physical Layout

Fig. 14. Original Commercial EMI Filter. L11, L12 are 15µH wound toroidal
inductors, CY11 and CY12 are Rifa PME-271 47nF film capacitors, CX1 and
CX2 are Vishay Roederstein F1772-522-2030 2.2µF film capacitors, CY21

and CY22 are 15nF ceramic capacitors, and the common-mode choke has a
measured leakage inductances of 30.2µH and a magnetizing inductance of
4.45mH.

Common- and differential-mode measurements were taken
of the unmodified filter, as well as an intermediate step
before the inductance cancellation windings were installed. In
this intermediate step, the large inductors L11 and L12 were
removed and straight, solid 14ga wire was installed in their
place. This configuration, referred to here as Without Series
Inductor, was used as a baseline comparison for improvements
based on inductance cancellation.

The tuning procedure outlined here is the same as the one
used in Section II-C, and was developed for tuning the filter
response due to the common- and differential-mode capacitors.
Initially, the connections of common-mode capacitors CY1 and
CY2 are tuned simultaneously to compensate (in a symmetric
fashion) for their parasitic inductances. Once the optimal
positions are found, the capacitors are permanently attached
to their respective windings. Following this, the differential-
mode capacitor CX1 is tuned by moving its connections on
both coils symmetrically to find an optimal output response.

This order of tuning makes sense: the common- and
differential-mode capacitors do not impact system perfor-
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Fig. 15. Modified version of the EMI filter in Fig. 14 with L11 and L12

removed, and two inductance compensation windings installed.
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Fig. 16. Illustration of folded winding used for inductance compensation in
the EMI filter of Section III, fabricated from 2mm thick copper. When folded,
the total series inductance is 288.3nH, and the maximum equivalent shunt-
path inductance for a single element is -81.2nH (in the magnetic winding T
model).

mance in the same way. In Fig. 5(a) it can be seen that
the common-mode equivalent circuit is not influenced by the
differential-mode capacitance (or the inductance cancellation,
other than through the fixed series inductance introduced by
the winding); the common-mode filtration operates as if the
differential-mode capacitor were an open circuit. However,
the differential-mode filtration is dependent on the common-
mode capacitance and inductance cancellation. This means
that if the inductance compensation for the common-mode
capacitance is optimized first, the inductance compensation
for the differential-mode capacitor can be tuned subsequently
without influencing the common-mode performance.

The results of the completed tuning are shown in Fig. 17

along with the stock and baseline filter configurations. It
should be noted that tuning of both the common- and
differential-modes is based on compromises between high
and low frequency performance. This particular “optimal”
output response chosen here may not be the highest achievable
performance for a particular range of frequencies of interest.
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Fig. 17. Performance comparison of the commercially-available EMI filter
in Fig. 14 and the modified version in Fig. 15, showing performance both
without and with inductance compensation.

The results of incorporating the inductance cancellation
coils reveal a dramatic improvement in the filtration perfor-
mance for both the common- and differential-mode responses
over the baseline (stock filter with L11 and L12 removed,
labeled as without series inductor). The common-mode shows
improvement across its full range, and the differential-mode
shows substantial improvement over its full range except for
the small resonance around 2MHz. (This small resonance is
caused in part by the capacitor-inductor-capacitor π-section
formed with the two capacitors attached to the inductance
compensation winding in the differential-mode, and can be
reduced by fabricating a winding with lower series inductance
than the over-sized one used here.)

The common-mode performance with inductance compen-
sation is somewhat worse (∼10dB) than that of the stock filter
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(with large inductors L11 and L12), while the differential-
mode performance is comparable. More importantly, the per-
formance with the inductance cancellation windings exceeded
the commercially-published performance specification of the
stock filter (not shown), without requiring the large, expensive
series inductors of the stock filter.

The results from this commercial EMI filter, as well as those
from the test filters in Section II, show clearly that a single
magnetically coupled winding can provide effective inductance
compensation for two capacitors. Moreover, it is demonstrated
that the performance of a commercial filter design can be
preserved at lower component weight and cost through use of
the proposed approach. It is anticipated that further substantial
design improvements could be achieved in a filter expressly
designed to take advantage of the inductance compensation
method proposed here.

IV. ANALYTIC FORMULATIONS

In this section an analytical basis is sought for the proposed
method of compensating for the inductance of two capacitors
using a single coupled magnetic winding. It is derived from
an extension of the methods used to analyze single-capacitor
inductance cancellation techniques. The predictions of this
method are then compared to measured results to illustrate
its usability.

A. Extended Cantilever Model
Analysis of inductance cancellation windings with a single

capacitor is relatively straightforward since a two-port trans-
former model of the windings is used, which has only three
independent terms. The number of independent terms needed
to completely describe coupled magnetics with n terminals is
given by n(n + 1)/2 [15], which grows as the square of n.

Adding to the complexity is the fact that many models for
multiple winding transformers either do not adequately model
the complete transformer behavior, or have poor correlation
and numeric conditioning to attempted measurements of model
parameters from terminal characteristics [16], [17]. One model
that is effective, and well conditioned for experimental param-
eter extraction, is the Extended Cantilever Model [15], [16].

The Extended Cantilever Model of a coupled system yields
an equivalent circuit with directly measurable parameters and
provides a direct mapping between circuit parameters and
the inductance matrix parameters. It is also well conditioned
numerically when dealing with small leakage fluxes or high
coupling factors. The extended cantilever circuit model for
a three-port system is shown in Fig. 18(a), with circuit
parameters related to impedance matrix parameters as follows:

Z = sL (1)

B =





Z11Z12Z13

Z21Z22Z23

Z31Z32Z33





−1

(2)

Nk =
Z1k

Z11

(3)
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Fig. 18. Three-port extended cantilever models.

c11 = Z11 (4)

cij = −

1

NiNjbij

(5)

where bij is the (i, j)
th element of B.

It should be clarified that the notation used to indicate the
impedance matrix Z is representative of only the reactive
component of Z due to the equivalent inductance; the extended
cantilever model in [15] is formulated only with consideration
to inductances. An extension which allows for full Laplace
domain circuit elements can be found in [18], [19], however
in the idealized case considered here, parasitic resistances and
capacitances are assumed to be negligible.

B. Three-Port Analysis

Fig. 18(b) shows the application of the extended cantilever
model to a center-tapped winding with two tap points. Fig. 19
shows additional circuit connections used for finding the
system transfer function. The full transfer function for the
system is given in Appendix I, and truncated versions are
utilized in this section where appropriate.

By analogy to the case of inductance cancellation for a
single capacitor, we desire to find conditions that drive the
transfer function from the input source to the output voltage
to zero (or close to zero). In finding where the transfer
function goes to zero, conditions must be found where both
the numerator becomes zero, and the denominator remains
finite and non-zero. Starting from the numerator of the full
transfer function in (10) from Appendix I, setting it equal to
zero, refactoring, and dividing by the non-zero value of zl, a
condition is found in which a zero in the numerator can be
generated:
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Fig. 19. Shared-terminal three-port circuit for use with the Extended
Cantilever Model tapped-inductor configuration of Fig. 18(b). T2 and T3

represent the (inductive) high frequency impedances of the capacitors.

0 = Z13 (Z12 + Z23 + Z13 + Z22)
− (T2 − Z12 − Z13) (T3 − Z13 − Z23)

(6)

This result, considered by itself, provides a number of terms
that can be adjusted to satisfy the equality. However, in the
case of common-mode and differential-mode filtering there are
additional constraints that must be considered.

C. Common- and Differential-Mode Optimization
As described previously in Sections II-C and III, in an EMI

filter the common- and differential-mode capacitors do not
impact system performance in the same way: the common-
mode filtration operates as if the differential-mode capacitor
were an open circuit, while the differential-mode filtration
is dependent on the common-mode capacitance and its in-
ductance cancellation. To find the optimal cancellation for
the common-mode capacitor, the transfer function in (10)
is considered at the limit where T3 → ∞ (the differential-
mode capacitance is a virtual open circuit for common-mode
signals).

H(s) =
(T2 − Z13 − Z12) zl

· · ·

= 0 (7)

From this result, it is shown that if T2 = Z12+Z13, then full
cancellation in the common-mode can be achieved. With the
common-mode cancellation constraint met, the result is then
inserted back into the original transfer function in (10) to find
the constraint placed on the differential-mode compensation:

H(s) =
Z13 (Z12 + Z23 + Z13 + Z22)

· · ·

= 0 (8)

The numerator of this result contains no terms of T3 in
which to tune in comparison to the terms of the impedance
matrix. Additionally, the terms of the impedance matrix in a
cylindrically or concentrically wound coil configuration are
positive, preventing simple geometries from creating a zero in
the transfer function. If differential-mode compensation is to
be achieved, this result seems to provide no opportunity for
the transfer function to become zero, save for the possibility
of making Z13 = 0. In the case where Z13 can be made
zero, the transfer function denominator would remain finite
and non-zero, representing a possible condition to generate a

zero for the transfer function, if the structure can be arranged
to provide it.

Another consideration may apply in this case. In past work
[6] it was shown that depending on the frequency range of
interest, filter performance, even with imperfect cancellation,
may be perfectly adequate for practical purposes. With im-
perfect cancellation, a new term ∆2 can be defined to be the
effective residual shunt-path impedance of the capacitor. More
specifically, ∆2 = T2− (Z12 + Z13). If this is substituted into
the general condition in (6), and with the resulting equation
rearranged, (9) results. This provides a relation where Z13 is
not explicitly required to be zero for the transfer function to
become zero.

0 = Z13 (T2 + Z22 + Z23) − ∆2 (T3 − Z23) (9)

Hence, one may gain good performance in both common-
mode and differential-mode by realizing substantial (but not
perfect) cancellation in common-mode to benefit differential-
mode performance.

D. Simulation and Model Validation
To validate the model and transfer function analysis, the

common- and differential-mode filters constructed in Sec-
tion II-C are used as the basis for simulation, excluding the
coupling between the two coils. Each of the measurements
presented in the section is simulated here using the model
developed, to allow comparison to the experimental results.

To simulate both common- and differential-mode responses,
the equivalent circuit models for each mode are constructed.
These equivalent circuit models, shown in Fig. 20, include the
inductance compensation windings, as well as the equivalent
series resistance and equivalent series inductance of each ca-
pacitor. This allows for the direct use of (10) from Appendix I,
the transfer function of the circuit in Fig. 19.
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Fig. 20. Common- and differential-mode equivalent circuits used to simulate
the filters in Section II-C.

In the simulation, both the line-to-ground (Y) capacitor
(Panasonic ECK-ATS472ME6) and the line-to-line (X) capac-
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itor (Rubycon 250MMCA334KUV) are modeled with first-
order equivalent series resistance, equivalent series inductance,
and bulk capacitance. The nominal value of capacitance, along
with the measured values of inductance and resistance, are
used in the model of each capacitor. The Y capacitor param-
eters are RY =200mΩ, LY =48.6nH, CY =4700pF; the X ca-
pacitor parameters are RX=50mΩ, LX=49.4nH, CX=330nF.
The source (zs) and load (zl) impedances match those of the
network analyzer, 50Ω. The coil used in the test filters, shown
in Fig. 7, is represented by the inductance matrix Lcoil, which
is obtained using the numerical inductance calculation tool
FastHenry:

Lcoil =





36.52 42.62 0.236
42.62 224.6 8.089
0.236 8.089 5.262



 nH

For common-mode, T3 is set to 1MΩ to approximate an
open circuit, and T2 is set to the effective impedance of the
Y capacitor, ZYCM

= 1

2

(

RY + (jωCY )
−1

+ jωLY

)

. For the
differential-mode simulation, the effective impedance of the
Y capacitor is different. With the two capacitors in series,
the effective impedance, and thus T2, now becomes ZYDM

=

2
(

RY + (jωCY )
−1

+ jωLY

)

. The effective impedance of
the X capacitor is ZXDM

= RX + (jωCX)
−1

+ jωLX , the
value used for T3.

The results of the common- and differential-mode simula-
tions are shown in Fig. 21. Comparing the simulation results
to the experimental data in Fig. 12, the differential-mode
results do match in an absolute sense. The Optimal Y (DM)
simulation is roughly between the two measured coupling
cases, which is understandable given coupling between the
coils is not modeled. However, the addition of the X capacitor
in the Optimal Y, Uncancelled X (DM) fails to match the same
downward-shift in resonance to near 20MHz, which exists in
both experimental measurements. The shift of this resonance
is representative of an increase in effective inductance in the
Y capacitor branch, which may be a result of unmodeled
inductive coupling between the X and Y capacitors. The
important similarity between the experimental measurements
and the simulation is seen comparing Optimal Y, Uncancelled
X (DM) and the final trace Optimal Y, Optimal X (DM). By
appropriately locating the X capacitor on the coil, it is possible
to both shift the resonance higher in frequency, and to increase
the attainable attenuation.

If consideration is given to modeling the increase in effec-
tive inductance in the Y capacitor branch when the X capacitor
is present, significantly improved correlations between the
experimental measurements and the model simulation result.
If ZYDM

= 2
(

RY + (jωCY )
−1

+ jω (LY + 0.2LY )
)

, which
represents a modest 20% increase in effective inductance, and
slightly moving (by 1.5mm) the tuning location of the X
capacitor on the coil to yield a refined inductance matrix,

Lcoil =





36.52 42.29 0.563
42.29 222.4 9.091
0.563 9.091 5.432



 nH
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Fig. 21. Simulated results for the filters in Section II-C, using the circuits
shown in Fig. 20. Note the different frequency range than in Fig. 12.

the plot in Fig 22 results. These results correlate sig-
nificantly better than the case without the added effective
inductance, although differences are still notable for Optimal
Y, Uncancelled X (DM).

Given the substantial modeling simplifications used in
creating these simulations (e.g. neglecting coil-to-coil and
other mutual couplings, using simple numerical simulations
to obtain coil inductances, etc.) the degree of accuracy of the
model is striking, confirming its usefulness for understanding
the behavior of such systems.
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Fig. 22. Simulated results for the filters in Section II-C, using the circuits
shown in Fig. 20 with additional differential-mode Y capacitor inductance.

V. CONCLUSION

The size and performance of EMI filters are often limited
by their component parasitics, such as the equivalent series
inductance of capacitors. Past work has shown that a coupled
magnetic winding can be used to cancel the effects of a
single capacitor’s parasitic inductance, thereby substantially
improving filter performance.
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This paper has built on previous work by demonstrating
the use of a single coupled magnetic winding to compensate
for the effects of the parasitic inductances of two discrete
capacitors. This work was applied experimentally to both test
filters and to a commercially-available EMI filter with great
success. Further, the coupling of closely oriented magnetic
windings was also investigated, illustrating their successful use
in constrained spaces, and a possible avenue for optimizing
winding size. Finally, an analytical basis for the inductance
compensation is developed and compared to experimental
results.

APPENDIX I
THREE-PORT TAPPED-INDUCTOR EXTENDED CANTILEVER

MODEL TRANSFER FUNCTION

Equation (10) gives the analytic solution of the transfer
function from input voltage Vin to output voltage Vl for
the circuit in Fig. 19. The result was found using direct
circuit analysis, with the source network consisting of an
input voltage source Vin with series impedance zs, and a load
network comprised of an impedance zl. T2 and T3 are arbitrary
impedances representing the two capacitors.

H(s) =

(T2T3 − Z13T3 − Z12T3 − Z23T2

−Z13T2 + Z12Z23 − Z13Z22) zl

T3zlzs + T2zlzs + Z22zlzs + T2T3zs

+Z33T3zs + 2Z23T3zs + Z22T3zs

+Z33T2zs + Z22Z33zs − Z2
23zs

+T2T3zl + Z11T3zl + Z22T2zl + 2Z12T2zl

+Z11T2zl + Z11Z22zl − Z2
12zl

+Z33T2T3 + 2Z23T2T3 + Z22T2T3

+2Z13T2T3 + 2Z12T2T3 + Z11T2T3

+Z11Z33T3 + 2Z11Z23T3 + Z11Z22T3

−Z2
13

T3 − 2Z12Z13T3 − Z2
12

T3+
Z22Z33T2 + 2Z12Z33T2 + Z11Z33T2

−Z2
23T2 − 2Z13Z23T2 − Z2

13T2

+Z11Z22Z33 − Z2
12

Z33 − Z11Z
2
23

+2Z12Z13Z23 − Z2
13Z22

(10)
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