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Abstract— This document describes several aspects relating to
the design of dc-dc converters operating at frequencies in the
VHF range (30-300 MHz). Design considerations are treated
in the context of a dc-dc converter operating at a switching
frequency of 100 MHz. Gate drive, rectifier and control de-
signs are explored in detail, and experimental measurements
of the complete converter are presented that verify the design
approach. The gate drive, a self-oscillating multi-resonant circuit,
dramatically reduces the gating power while ensuring fast on-
off transitions of the semiconductor switch. The rectifier is a
resonant topology that absorbs diode parasitic capacitance and is
designed to appear resistive at the switching frequency. The small
sizes of the energy storage elements (inductors and capacitors)
in this circuit permit rapid start-up and shut-down and a
correspondingly high control bandwidth. These characteristics
are exploited in a high bandwidth hysteretic control scheme that
modulates the converter on and off at frequencies as high as
200 kHz.

I. INTRODUCTION

M
ODERN APPLICATIONS are driving demand for

power supply systems with increasingly fast transient

response. Moreover, there is a desire for improvements in the

size, cost, and integration of dc-dc power converters. These

goals motivate the development of switching power converters

operating at greatly increased switching frequencies. Greatly

increased frequencies enable reduction in the numerical

values and energy storage of the passive components that

limit achievable transient response and account for the

majority of converter size and cost. Furthermore, operation

at sufficiently high frequencies enables the elimination of

magnetic materials (along with their attendant manufacturing

and performance limitations) and opens the way towards

greater integration of passive components.

This paper introduces circuit designs and methods suit-

able for dc-dc converters operating at very high frequencies

(VHF, 30-300 MHz). These developments are introduced in

the context of the design and experimental evaluation of a

100 MHz dc-dc converter. Special emphasis is placed on key

design elements including a low-loss multi-resonant gate drive,

a radio frequency (RF) resonant rectifier, and methods for

realizing high-bandwidth output control. Section II of the pa-

per provides background in the area of radio-frequency dc-dc

power conversion, and describes the overall system design and

control approach. Section III explains the design and operation

of a multi-resonant gate drive circuit that provides rapid, low-

loss gating transitions at very high frequencies. Operation and

design of the radio-frequency resonant rectifier is presented

in Section IV. Experimental measurements and performance

evaluation of a closed loop dc-dc converter implementing the

proposed methods are presented in Section V, and Section VI

concludes the paper.

II. SYSTEM STRUCTURE AND CONTROL

A. Background

Achieving high efficiency in dc-dc converters operating at

very high frequencies necessitates means to keep the switching

loss to a minimum. In hard-switching converters some energy

is lost every time the semiconductor switches commutate,

yielding a loss component that is proportional to the switching

frequency. Soft switching – and in particular zero voltage

switching (ZVS) – reduces the switching loss by maintaining a

low voltage across the semiconductor device during the on/off

transitions [1], [2]. Furthermore, ZVS operation is beneficial

because it reduces the electromagnetic interference (EMI)

normally associated with rapid transitions in hard-switched

converters. However, the resonant methods used to realize ZVS

operation tend to incur losses that do not scale back with load,

making it difficult to achieve efficient light-load operation. A

challenge, then, is to take advantage of the high-frequency

capabilities of ZVS topologies while still maintaining efficient

operation at light load.

A further challenge in implementing VHF power convert-

ers is reducing the losses due to the gating of the semi-

conductor devices. With conventional gate drives, gating loss

is proportional to switching frequency and rapidly becomes

unacceptable as frequency is increased. Recovering at least

a portion of the energy delivered to charge the gate is thus

an important means for extending the achievable switching

frequency range [3]–[11].

Parasitic elements are another important consideration in

RF converters, and become more so with increasing switching

frequency. In many RF circuit implementations, the size of

some circuit elements is comparable to the parasitics intro-

duced by the devices, packages and interconnections. For
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example, the parasitic capacitance of the semiconductor device

is typically an important consideration in RF converter design.

To address this issue, and to allow for even higher switching

frequencies, topologies that absorb or utilize the component

parasitics (especially device capacitances) as an integral part of

their operation are desirable. This, however, leads to a tighter

dependance of circuit performance on device parasitics than

is typical in conventional designs.

B. Converter System Structure

This paper describes a design approach that can meet all the

above requirements. A block diagram of a system realizing

this approach is shown in Fig. 1, consisting of a radio-

frequency resonant inverter, a transformation stage, and a

resonant rectifier, along with an appropriate control system.

Inverter T ra ns f o rm a ti o n 
S ta g e

R ec ti f i er

RLV i n

Control System

Fig. 1. A block diagram illustrating the structure of a high frequency dc-dc
converter.

Figure 2 shows a simplified schematic of the prototype

dc-dc converter implemented to demonstrate this approach.

Subsequent sections will focus on key system elements, and

will present an evaluation of the different functional blocks of

the system.
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Fig. 2. Schematic of a 100 MHz dc-dc converter.

An inverter at the system input transfers power from the

input source to the subsequent stages by transforming the dc

input voltage into a VHF sinusoid. The inverter can be imple-

mented using any of a number of switched-mode RF power

amplifier topologies that provide the required ZVS (e.g., [12]–

[17]). For the particular implementation in this paper, the

inverter utilized was a class E power amplifier operating with

a low loaded Q (QL) to deliver power efficiently1. Details

on the design, characteristics, and limitations of this class of

power amplifiers can be found in [14], [19], [20], and [21,

Chapter 15], and so will only be treated briefly here.

1In conventional RF designs, the loaded Q of the inverter tank is usually
chosen to be large, resulting in waveforms with high spectral purity [14],
[18]. For power conversion, however, the requirements on QL are different
since the goal is to maximize power transfer with minimum loss. A low value
of QL results in less energy resonated in the tank, which implies reduced
conduction loss in the parasitic elements of the inverter.

Inverter output power (under ZVS conditions) is propor-

tional to the capacitance in parallel with the switch. For the

intended output power range in the practical implementation

described here, the required capacitance is provided by the

parasitic drain-source capacitance of the MOSFET and 20 pF

of external capacitance.

The device selected for the main switching element of the

inverter is a lateral doubly-diffused MOSFET (LDMOSFET)

of the type typically used in cell phone base stations. This

semiconductor device offers the characteristics required to

operate at high frequencies: it presents an acceptably low

output capacitance (Coss) as well as a low input capacitance

(Ciss), gate resistance (RG) and reverse transfer capacitance

(Crss) that allow for a small gating loss under resonant drive

conditions.

The system described in this paper also incorporates a new

low-loss gate driver that recovers most of the energy used to

control the gate of the semiconductor device. Furthermore, it

provides fast response times compatible with control schemes

that achieve high bandwidth. An important attribute of this gate

drive is the trapezoidal wave-shaping of the gate voltage; this

characteristic allows fast commutation of the switch, requires

only small passive components for its realization, and provides

near-minimum loss.

As shown in Fig. 1, the inverter is followed by a transforma-

tion stage, which provides a means of scaling the voltages and

currents of the inverter to a level at which a set of balanced

resonant rectifiers can operate efficiently. This stage also

provides resistance compression [22] to mitigate the inherent

sensitivity of the class E to variations in load. Design of this

type of circuit is treated in [22] so is not considered further

here.

The next stage in the dc-dc structure is a resonant rectifier

which transforms the intermediate RF ac waveforms back

down to dc. Rectifier circuits having characteristics similar to

tuned resonant inverters can operate efficiently under certain

conditions [23]–[26]. This paper introduces a resonant rectifier

structure in which two single-diode resonant rectifiers deliver

power to a constant voltage output. The effective impedance

of these rectifiers at the switching frequency is desired to be

resistive to ensure suitable operation of the previous stages.

Design methods for this rectifier are presented in Section IV.

The design of high efficiency dc-dc converters requires the

implementation of output control techniques compatible with

all of the requirements described in Section II-A. One suitable

technique is the on/off or “burst-mode” modulation [27], [28]

sometimes used to obtain high efficiency in converters operat-

ing at light load2. In the implemented converter, regulation of

the output voltage is achieved by modulating the converter on

and off (“bang-bang” control), forcing the voltage to comply

with a ripple specification. The simplicity of this control

scheme overcomes the difficulty in efficiently controlling RF

amplifiers through other means (e.g. frequency modulation [1],

2Some cellular architectures, like the ones introduced in [9], also allow for
high efficiency operation over wide load ranges.
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[8], [29], [30]). The converter system developed here is

regulated with a hysteretic controller that maintains the output

voltage within a 100 mV hysteresis band through on/off or

bang-bang control of the converter. Section V will evaluate

the performance of a 10 W dc-dc converter switching at a

frequency of 100 MHz with closed-loop voltage control.

III. SELF-OSCILLATING MULTI-RESONANT GATE DRIVE

As discussed in the previous section, reducing gating loss

is essential to operating at very high switching frequencies.

Conventional hard-switched gate drives dissipate all of the

energy delivered to the gate from the gate drive supply each

cycle. This results in a frequency dependent gate drive loss:

Pgate = Ciss · V 2
gate · fs (1)

To achieve very high frequency operation while maintaining

acceptable gating loss, a resonant energy recovery gate drive

is necessary. Switch transitions are effected by ringing charge

on and off of the gate [3]–[10]. Under these conditions, most

of the energy stored on the gate is recovered and total loss

is a fraction of what can be expected if the device were hard

gated.

One approach that has been used previously is a sinusoidal

gate drive [7]–[11]. In this approach, a resonant network is

used to ring charge on and off the gate such that the gate

voltage is sinusoidal (possibly with a dc offset). For switching

times much longer than a gate RC time constant, this can be

an effective method, providing a reduced loss of:

Pgate = 2π2
· f2

s · C2
iss · RG · V 2

G,ac (2)

where Ciss is the gate input capacitance, RG is the effective

series resistance of the MOSFET gate and drive circuit, and

VG,ac is the peak amplitude of the sinusoidal ac gate voltage.

While a sinusoidal resonant drive is effective in some

applications, it does have some important limitations. First,

many of the commercially-available LDMOS devices suitable

for VHF power conversion incorporate a protective diode

between the source and gate terminals, preventing the use of

gate drivers which impose negative voltage excursions on the

gate. Moreover, even when a sinusoidal gate drive can be used,

the ac drive magnitude often has to be larger than needed to

fully enhance the device in order to provide a fast gate drive

transition time, increasing overall gate loss by a square law as

in (2). The negative excursions of the gate drive voltage also

induce unnecessary gate loss.

The most efficient way to charge/discharge the gate ca-

pacitance Ciss for a specified transition time is a constant

current source [31, Appendix A]. A trapezoidal drive voltage

waveform applied at the gate of the semiconductor switch

will yield an approximately constant current on the rising and

falling edges of the gate voltage (for small gate resistance RG),

thus minimizing the power dissipated in the gate resistance.

As shown in [32], the power dissipated in RG of an MOS

transistor driven by a trapezoidal waveform is:

Pgate = C2
iss · V 2

gate · RG ·

[

1

tr
+

1

tf

]

· fs (3)

where Vgate is the maximum voltage of the trapezoid, Ciss is

the input capacitance of the LDMOS,and tr and tf are the

rise time and the fall time respectively of the drive waveform.

Consider driving the gate of a MRF373ALSR1 LDMOSFET

(having Ciss=114 pF and RG=0.3 Ω) at a switching frequency

fs=100 MHz with the three driving schemes described above.

Hard gating with a peak gate voltage Vgate= 10 V dissipates

1.17 W. By contrast, the power dissipated by a sinusoidal

gate drive with VG,ac=15 V (large enough to rapidly enhance

the device) is only 173.16 mW. A trapezoidal driving scheme

with tr = tf =1 ns and Vgate=10 V yields a further reduced

dissipation of only 78 mW.

Here we introduce an efficient gate drive using a simple

multi-resonant structure to implement trapezoidal voltage wave

shaping. This circuit, shown in Fig. 3, is a switched mode

driver incorporating wave shaping methods similar to those

employed in class F power amplifiers and related circuits [16],

[17], [33]–[35], [36, Chapter 7]. Unlike traditional class F

power amplifiers, the driver proposed here operates in switched

mode, thus providing maximum efficiency.

L1

L2

C2

VDRIVER
P h a s e  
S h i f t  

N e t w o r k

ZI N

Aux.

M a i n

+
V g
-

Q1

Q2

Fig. 3. Schematic of the multi-resonant gate drive. The input impedance
ZIN, when properly tuned, peaks in the vicinity of the fundamental and the
third harmonics and has low impedance at the second harmonic.

Figure 4 shows a simple multiresonant passive network

that is at the core of the gate drive. The input impedance

L1 C1

L2

C2

 Multi-r e s o n ta n t s tr uc tur e

Z IN

Fig. 4. Simple multiresonant network.

of the network (ZIN) has maxima at two frequencies (poles).

The impedance is zero at dc and at a frequency somewhere

between the two maxima. The components L2 and C2 are

tuned to be series resonant close to the second harmonic as

viewed from the drain/source port of the auxiliary device.

The resonant components L1 and C1 are tuned in conjunction

with L2 and C2 such that the input impedance ZIN in Fig. 4

presents relatively high impedance at the switching frequency

and the third harmonic of the switching frequency. This is

done in such a manner that the voltage vg in Fig. 3 can support
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approximately trapezoidal waveforms that contain a dominant

fundamental voltage component and a smaller third harmonic

component. A good design starting point for tuning the multi-

resonant network is to start with impedance maxima (poles)

at the fundamental and third harmonic, and a low impedance

(zero) at the second harmonic of the switching frequency as

shown in Fig. 5. Component values for tuning the poles of

ZIN in Fig. 4 at exactly the fundamental and third harmonic

and placing the zero at the second harmonic can be determined

starting from a selected value for C1 [37], [38]:

L1 =
1

9π2f2
s C1

, L2 =
1

15π2f2
s C1

, and C2 =
15

16
C1 .

(4)

Note that the component C1 incorporates the output capac-

itance Coss of the auxiliary switch and the gate capacitance

Ciss of the main semiconductor switch. It is important to

minimize the stray inductance between the gate of the main

MOSFET and the auxiliary drain node, such that both Coss

of the auxiliary device, and the gate capacitance Ciss of the

main device can be considered connected in parallel. Because

the inductor L1 acts as a resonant inductor, it has a very small

numerical value and small energy storage.
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Fig. 5. Input impedance vs. frequency of the simple multiresonant structure
shown in Fig. 3 when the reactive elements follow the relations given in
Equation 4.

When the gate drive auxiliary switch in Fig. 3 drives this

structure at the switching frequency with a duty ratio of

somewhat less than 0.5, the voltage waveform at the gate is

roughly trapezoidal and offset so that it never swings negative.

Moreover, the dynamic characteristics provide zero voltage

switching of the driver switch, such that energy delivered to

the gate capacitance is naturally returned to the gate drive

supply. These conditions arise as a result of the half-wave

symmetry imposed by the impedance of the network [16],

[17]. A simulation of the gate to source voltage of the main

switch with a switching frequency of approximately 100 MHz

is shown in Fig. 6. One can easily appreciate that the trape-

zoidal waveform and dc offset characteristics are achievable.

Experimental results confirming practical low-loss operation

of this drive are presented in Section V.
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Fig. 6. Gate to source voltage at input of the main MOSFET of the converter.

Controlled self-oscillation of the driver is achieved by using

an appropriate feedback network around the gate drive circuit.

A fraction of the drain to source voltage of the gate drive

MOSFET is phase shifted and applied to its gate. Figure 7

shows the network that provides the required phase shift

along with a simplified schematic of the start up circuit.

The start up circuit is required to initiate the oscillation at

the application of the gate-drive input voltage. (As shown in

Section V, modulating this input on and off provides a means

of controlling the converter.)

LT
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L1
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CF

RT2

DT2

RT1

DT1

R g s t D g s t
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M ul ti -
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P h as e -s h i f t 
n e tw o rk

P o w e r/C o n tro l  
Si g n al

Q1

Q2
A u x .

M a i n

CT1 CT2

Fig. 7. Simplified schematic circuit of the startup control strategy.

Components LF, CF and LT provide a phase shift of -180◦

of the fundamental voltage at the drain of the auxiliary device

in order to achieve self-oscillation while at the same time

the components are selected to minimize loading that could

significantly change the impedance ZIN of the multiresonant

network.

This section presents PSPICE simulations of the self-

oscillating multiresonant gate driver implemented in the pro-

totype described in Section V. For this simulation, the gate

of the main LDMOSFET (Freescale MRF373ALSR1) is

modeled as a series RLC branch with LG,main=700 pH,

RG,main=0.3 Ω and Ciss,main=114 pF. Referring to Fig. 7, the

- 2290 -



values of the multiresonant elements are: L1=8.1 nH, L2=4 nH,

C2=150.56 pF. Coss,aux=48 pF, which together with Ciss,main

makes C1 =162 pF. Figure 8 shows the magnitude of the

impedance ZIN at the drain of the auxiliary LDMOSFET. The

phase-shift network responsible for the self-oscillation is also

included in the simulation as well as the parasitic elements

present in the printed circuit board (PCB). The magnitude of

ZIN at the switching frequency (approximately 100 MHz) is

higher that than at the third harmonic as explained above.
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Fig. 8. Simulated input impedance at the drain of the auxiliary switch of
Fig. 7. This simulation accounts for parasitics in the PCB and assumes linear
device capacitances and 0.7 nH lead inductance in series with the gate of the
main LDMOSFET. Notice that the phase-shift network does not significantly
change the impedance at the frequencies of interest (fundamental, 2nd and
3rd harmonic).

The gate of the auxiliary MOSFET Q2 (a Polyfet L8829)

is part of the phase shift network and is modelled as series

RLC branch with RG,aux=3 Ω and Ciss,aux=30 pF. The gate

inductance LG,aux is not significant and is included in the

value of LT. The values of the elements comprising the phase

shift network are: LF=100 nH, CF=56.8 pF, LB=100 nH,

CB=2 nF and LT=84 nH. The magnitude and phase of the

transfer function (TF) of the phase-shift network responsible

for achieving self-sustained oscillation is shown in Fig. 9.

As described above, the figure shows that at the intended

frequency of oscillation (100 MHz), the phase-shift angle of

the TF is -180◦. The phase-shift network also provides filtering

to attenuate the third harmonic, as is demonstrated in the

figure.

The mechanism for starting the oscillation (and thereby

tuning on the converter) is as follows. After the gate drive

power supply is applied, a delay of duration Th is provided to

allow the voltage at the drain of the auxiliary device to settle.

After this interval (Th) a pulse of voltage of duration Tp is

applied to the phase-shift network. This momentarily drives

down the drain to source voltage of the auxiliary switch. At

the end of the pulse, the drain to source voltage will naturally

ring with the harmonic characteristics of the network. This

voltage, in turn, drives the gate of the main switch. To stop

the oscillations, the supply voltage to the multi-resonant gate
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Fig. 9. Simulated magnitude and phase of the transfer function vgate/vdrain

of the auxiliary LDMOSFET. At the switching frequency (100 MHz), the
phase shift is -180◦.

driver is cut by a logic control signal. The durations of the

hold interval (Th) and the pulse interval (Tp) are determined

by the timing components RT1,CT1 and RT2, CT2 respectively.

Diodes DT1 and DT2 provide a low impedance path to rapidly

discharge the timing capacitors to allow for faster activation

rates. Figure 10 shows the simulated voltage at the drain of

the auxiliary LDMOSFET (gate of the main switch) under

self-oscillating conditions at fs=102.2 MHz.
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Fig. 10. Simulated gate voltages at the gates of the main and auxiliary
switches. The switching frequency fs=102.2 MHz.

When modulating the dc-dc converter on and off, the energy

stored in the bypass capacitors, the timing elements of the

network, and the output tank is lost in each transition. This

energy loss, as well as the time required for the cell to

achieve steady state operation, limits the maximum modulation

frequency. On the whole, the small size of the energy storage

components keeps this loss to a minimum and allows a

relatively large control bandwidth on the order of 200 kHz.
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Section V will present component values for the multi-

resonant gate drive used in the prototype. This gate driver

utilizes less than 100 mW at 100 MHz switching frequency

(less than 10% of an equivalent hard-switched gate drive).

IV. RESONANT RADIO-FREQUENCY RECTIFIER

The high-frequency sinusoidal voltage at the output of the

inverter in Fig. 2 generates sinusoidal currents at the outputs

of the transformation/compression stage. These currents are

rectified to provide dc power to the converter output.

As described in [22] it is desirable for the fundamental

voltages at the rectifier inputs to be substantially in phase with

the currents at the output of the transformation/compression

stage. Under this condition, the transformation/compression

network will provide appropriate loading to the inverter to

maintain the desired ZVS.

Figure 11 shows the schematic of the resonant rectifier

investigated here, loaded with a constant voltage at the out-

put. The rectifier is driven by a sinusoidal current source

of magnitude IIN. A resonant capacitance Cr represents the

sum of an external capacitor CEXT and an equivalent diode

capacitance CD. Resonant inductor LR provides a path for the

dc current and resonates with capacitance Cr so that the input

looks resistive at the fundamental frequency. A similar rectifier

structure was presented in the literature in [26] but for very

different drive and loading conditions that are not applicable

to the cell-modulation converter system considered here.

VOUTLR

D1

CD

I r e c

+

V r e c

-

CE X T

Fig. 11. Resonant rectifier connected to a constant output voltage. The
resonant capacitance Cr is the sum of the diode capacitance CD and an
(optional) external capacitance CEXT. CEXT may also be placed directly in
parallel with the diode.

The conduction duty cycle of the diode current depends on

the component values. By adjusting the net capacitance CR

in parallel with the resonant inductor, it is possible to trade

off the length of the conduction interval and the peak reverse

voltage across the diode. It is convenient to have a conduction

interval close to 50 percent, as this provides a good tradeoff

between peak diode forward current and reverse voltage. This

additional capacitance can either be added externally or can be

solely provided by additional diode area, which can have the

added benefit of reducing the overall conduction loss in the

rectifier. The value of LR of the resonant rectifier is selected

in conjunction with Cr to provide the desired “resistive” input

characteristics (fundamental rectifier input voltage in phase

with rectifier input current). Appropriate values can be found

through straight parametric search using a simulation tool

(e.g. PSPICE or a piecewise linear simulator) by looking at the

fundamental component of the voltage vrec and minimizing

the phase angle between the input current and the fundamental

component of the rectifier input voltage at a given nominal

output power.

Figure 12 shows the input current and voltage of a resonant

rectifier (like the one in Fig. 11) simulated using PSPICE.

For the simulation shown, LR=18.8 nH, CEXT=32 pF, CD

is the non-linear device capacitance of the diode (D1, an

MBRS260T3 Schottky diode), VOUT=12 V, and the sinusoidal

input current IIN=0.67 A at a frequency of 100 MHz. The

average power delivered to the load under these conditions

is 6.2 W. Note that Fig. 12 shows that the fundamental

component of the input voltage and the current are nearly

in phase resulting in a rectifier with an equivalent resistance

(only at the fundamental) of approximately 29.8 Ω. The

equivalent impedance at the fundamental frequency of the

rectifier will change with the input current. Over the operating

range of the rectifier, it is desired that this equivalent input

impedance remain substantially resistive. Table I shows how

the equivalent impedance of the rectifier changes as POUT

changes from 4 W to 14.47 W. Notice how even as the

equivalent resistance changes over the operating range, the

equivalent reactance remains small.

TABLE I

EQUIVALENT IMPEDANCE OF THE RECTIFIER OF FIG. 11.

POUT |ZIN| ]ZIN <e{ZIN} =m{ZIN}

[W] [Ω] (degrees) [Ω] [Ω]

4.000 38.52 21.6 35.81 14.18

5.398 32.87 7.2 32.61 4.12

6.554 28.61 0 28.61 0

7.621 25.33 -3.6 25.28 -1.59

8.643 22.73 -10.8 22.33 -4.26

9.634 20.62 -12.6 20.12 -4.50

10.611 18.87 -14.4 18.28 -4.69

11.583 17.40 -16.2 16.71 -4.85

12.549 16.16 -18.0 15.37 -4.99

13.509 15.10 -19.8 14.21 -5.11

14.470 14.17 -21.6 13.17 -5.22

The rectifier, a non-linear circuit, will generate an input

voltage vrec with significant harmonic content. For optimum

operation of the inverter, it is desirable to block the effects

of the harmonic components on the inverter current. This is

accomplished as part of the transformation stage and resistance

compression network as described in [22].

V. EXPERIMENTAL RESULTS AND EVALUATION

This section evaluates the performance of a prototype dc-

dc converter implementing the techniques described in the

previous sections. Figure 13 shows a photograph of the 11.5 W

converter operating at a switching frequency of approximately

100 MHz. Schematics and component values for the power

stage are provided in Figs. 2 and 7 and Tables II and III.

The input voltage range is from 11 V to 16 V and the output

voltage is 12 V with an output voltage ripple of 100 mV.
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Fig. 12. Rectifier input voltage and input current, when driven by a sinusoidal current source IIN at a frequency of 100 MHz. The resonant rectifier is
delivering 6.2 W to a 12 V output.

TABLE II

COMPONENTS USED IN 100 MHZ DC-DC CONVERTER OF FIG. 2.

Component Nominal Manufacturer Part Measured

Name Value and Part Style Number Value

CC1 18 pF CDE Chip- MC08EA180J 36.22 pF

+15 pF Mica 100 V MC08EA150J

CC2 56 pF CDE Chip- MC12FA560J 66.5 pF

+7 pF Mica 100 V MC08CA070C

Cextra 10 pF × 2 CDE Chip- MC08CA100D

Mica 100 V

Cin 2.2 µF Tantalum 35 V PCT6225CT

+0.68 µF Tantalum 35 V PCT6684CT

+0.047 µF × 12 Ceramic 50 V Kemet

CR 82 pF CDE Chip- MC12FA8205

+2 pF Mica 100 V MC08CA020D

CR1, CR2 15 pF × 2 CDE Chip- MC08EA150J CR1=32.6 pF

Mica 100 V CR2=32 pF

Cout 0.1 µF × 19 Kemet C0805C104M5UAC

Ceramic 50 V

D1, D2 Schottky ON Semi MBRS260T3

Power Diode 60V, 2.0A

L1 17.5 nH Coilcraft B06T6

LC1 33 nH Coilcraft 1812SMS-33N 38.1 nH

LC2 68 nH Coilcraft 1812SMS-68N 69.9 nH

Lchoke 120 nH × 2 Coilcraft 1812SMS-R12G

LDMOS Freescale MRF373ALSR1

70 V (max Vds)

LR 12.5 nH Coilcraft A04TJ

+ Two-turn 18 AWG Approx.

magnet wire coil 22 nH

+8.9nH board parasitic

LR1, LR2 18.5 nH Coilcraft A05T LR1 =18.9 nH

LR2 =18.7 nH

Waveforms showing the operation of the inverter for Vin,dc

= 11 V and Vout,dc = 12 V can be seen in Fig. 14. In

the top panel of the figure are the drain to source voltage

and the voltage at the input of the transformation stage in

Fig. 2. It is clear from the figure that zero-voltage turn-on of

the LDMOSFET is achieved, indicating a proper impedance

- 2293 -



TABLE III

COMPONENTS USED IN THE SELF-OSCILLATING MULTI-RESONANT GATE DRIVE OF FIG. 7.

Component Nominal Manufacturer Part Measured

Name Value and Part Style Number Value

L1 PCB trace 8.1 nH

C1 48 pF Coss,aux 162 pF

+114 pF Ciss,main

L2 PCB trace 4 nH

C2 100 pF CDE Chip- MC12FA101J 150.56 pF

+47 pF Mica 100 V MC12FA470J

+4 pF MC08CA040D

LF 100 nH Coilcraft 1812SMS-R10 L 100 nH

CB 2 nF Ceramic 50 V Kemet 2 nF

CF 47 pF CDE Chip- MC12FA470J 56.8 pF

+5 pF Mica 100 V MC08CA050D

+3 pF MC08CA030D

LB 100 nH Coilcraft 1812SMS-R10 L 100 nH

LT 82 nH Coilcraft 1812SMS-82N L 84 nH

RT1 1 kΩ Rohm, 0805, 1/8 W, 1 % MCR10EZHF1001 1 kΩ

CT1 100 pF Kemet, 0805, 50 V C0805C101J1GAC 325 pF

+220 pF Kemet, 0805, 50 V C0805C221J5GACTU

DT1 Diodes Inc. BAS70-7

RT2 2.43 kΩ Rohm, 0805, 1/8 W, 1 % MCR10EZHF2431 2.43 kΩ

CT2 100 pF Kemet, 0805, 50 V C0805C101J1GAC 325 pF

+220 pF Kemet, 0805, 50 V C0805C221J5GACTU

DT2 Diodes Inc. BAS70-7

Rgst 100 Ω‖100 Ω Rohm, 0805, 1/8 W, 1 % MCR10EZHF1000 50 Ω

Dgst Diodes Inc. BAS70-7

IC1 National LLP-6 LM5115

IC2 National LLP-6 LM5115

Auxiliary LDMOS Polyfet SO-8 L88219

Fig. 13. Power stage of the prototype 100 MHz dc-dc power converter.

match. Shown at the bottom of the same figure is the gate

to source voltage driving the semiconductor switch. The total

power dissipated by the gate driver, including the startup

circuitry, was measured to be less than 100 mW, which is more

than an order of magnitude less than the power that would be

dissipated had the switch been driven with conventional hard-

switched gating (and lower than the 300 mW dissipation of

an earlier implementation of this gate drive [22]).

The output voltage ripple is shown in Fig. 15 when

VOUT,DC = 12 V, POUT = 10 W. Under these conditions,

the controller modulates the converter on and off at 83.3 kHz

to provide the average power required to regulate the output.

The control signal modulating the converter system on and

off is shown in the lower trace of Fig. 15. This control

signal commands the converter either to operate or to remain

inactive depending on the conditions of the output voltage. The

resulting output ripple is approximately 100 mV peak to peak,

independent of load. In the figure, the 100 MHz switching

ripple (observed as the “hash” when the output voltage is

rising) is under-sampled in the time scale shown. While the

modulating frequency is on the order of 100 kHz, most of

the the energy storage components in the converter are sized

based on the 100 MHz switching frequency. Only the input and

output capacitors are sized based on the modulation frequency.

The modulation frequency is determined by the loading condi-

tions, the allowed hysteresis band around the nominal output

voltage, and the size of the output filter capacitor. In the

implemented design, the maximum modulation frequency was

in excess of 200 kHz. Figure 16 shows the schematic for

the hysteretic modulation controller and the switched-mode
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Fig. 15. Output voltage ripple and modulation control signal during steady
state operation. VOUT,DC = 12 V, POUT = 10 W, VIN = 16 V.

regulator that provides power to the self-oscillating gate drive

and start-up circuitry.

Table IV lists all the components used in the design of

the controller and the auxiliary power supply which provides

power to the gate drive. This auxiliary supply is a switched

mode supply that is rated to provide the power for the

controller and the gate drive.

As described in Section II, the on/off control scheme and

the small values of the reactive components allow for fast

dynamic response of the converter. This is evident in Fig. 17

which shows the output voltage during a step change in load

going from 4 W to 8 W: no substantive change in output

voltage is observed. The figure also shows the change in the

modulation control signal due to the load change.

As described in Section III, the small sizes of the energy

storage elements used in the design of the dc-dc converter

allows for fast modulation rates. Figure 18 shows the modula-

Fig. 16. Schematic of the hysteretic controller.
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Fig. 17. Output voltage ripple and modulation control signal during a load
step. POUT is changed from 4W to 8W.

tion control signal and the drain to source voltage of the main

MOSFET when the cell is switched on and off. The converter

reaches steady state operation in approximately 600 ns at turn-

on and also 600 ns at turn-off.

Figure 19 shows the efficiency of the dc-dc converter when

operating under closed loop control. The figure plots the

efficiency as the input voltage is varied over the operating

range (11 V to 16 V), parameterized in output power Pout.

While the efficiency of this prototype design is not particularly

high, our ongoing design work indicates that substantially

higher efficiencies are achievable using the design methods

proposed here.

VI. CONCLUSION

This document describes methods and circuits suitable for

the design of dc-dc converters operating at very high frequen-

cies. These methods are applied in the design of a dc-dc a

converter operating at a switching frequency of 100 MHz.
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TABLE IV

COMPONENTS USED IN THE ON-OFF CONTROLLER BOARD AND AUXILIARY POWER SUPPLY OF FIG. 16.

Component Nominal Manufacturer Part

Name Value and Part Style Number

R1 510 kΩ Rohm, 0805, 1/8 W, 1 % MCR10EZHF5103

R2 150 kΩ Rohm, 0805, 1/8 W, 1 % MCR10EZHF1503

R3 7.5 kΩ Rohm, 0805, 1/8 W, 1 % MCR10EZHF7501

R4 3.9 kΩ Rohm, 0805, 1/8 W, 1 % MCR10EZHF3901

R5 100 kΩ Rohm, 0805, 1/8 W, 1 % MCR10EZHF1003

R6 3 kΩ Rohm, 0805, 1/8 W, 1 % MCR10EZHF3001

C1 10 µF TDK, 1210, 16 V C3225X5R1C106M

C2 1 µF TDK, 0805, 16 V C2012X5R1C105K

C3 0.1 µF KEMET, 0805, 50 V C0805C104M50AC

C4 10 pF KEMET, 0805, 100 V C0805C100J1GAC

C5 22 µF TDK, 1210, 10 V C3225X5R1A226M

C6 1 µF TDK, 0805, 16 V C2012X5R1C105K

C7 0.1 µF KEMET, 0805, 50 V C0805C104M50AC

C8 0.1 µF KEMET, 0805, 50 V C0805C104M50AC

C9 0.1 µF KEMET, 0805, 50 V C0805C104M50AC

C10 100 pF KEMET, 0805, 100 V C0805C101J1GAC

C11 2 pF CDE, 0805, 100 V MC08CA020D

U1 Texas Instruments, QFN16 TPS6211

U2 Texas Instruments, SOT23-6 TLV3501

U3 Analog Devices, TSOT23-5 AD392
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Fig. 18. Drain to source voltage and control signal during startup and shut down of the converter in on/off control. VIN=11 V, VOUT=12 V. The cell is
fully on in 600 ns and turns off in about 600 ns.

Gate drive, rectifier and control designs are explored in detail,

and experimental measurements of the complete converter are

presented that verify the design approach. The gate drive,

a self-oscillating multi-resonant circuit, dramatically reduces

the gating power while ensuring fast on-off transitions of the

semiconductor switch. The rectifier is a resonant topology

that absorbs diode parasitic capacitance and is designed to

appear resistive at the switching frequency. The small sizes

of the energy storage elements (inductors and capacitors)

in this circuit permit rapid start-up and shut-down and a

correspondingly high control bandwidth. These characteristics

are exploited in a high-bandwidth hysteretic control scheme

that modulates the converter on and off at frequencies as high

as 200 kHz. It is anticipated that the guidelines and techniques

presented here will facilitate the development of power sup-

plies with switching frequencies in the VHF range and beyond

that meet the emerging demands for high performance power

electronics.
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