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Abstract—In this paper we present an adaptive controller for the boost–
based power factor precompensator which guarantees fast regulation of the
output voltage towards a desired constant value with a power factor close
to unity. This twofold control objective is fulfilled even in the presence of
harmonics on the voltage source and uncertainties on the system param-
eters and load. The key for the solution to this problem is to express the
model in terms of the input current instead of the inductor current. The
resulting controller is reduced, through transformations, to the cascade in-
terconnection of two controllers, namely the inner and the outer control
loop. It is shown that while the latter turns out to be a simple lead–lag plus
integration, the former is composed mainly of second order filters tuned
at the frequencies of the considered harmonics and with transfer functions
that follow a well defined pattern. Simulations are provided to assess the
performance of the proposed controller.

Keywords— AC-DC power conversion, power supplies, reactive power,
dissipative systems, adaptive control, nonlinear systems.

I. I NTRODUCTION

R
EGULATION of switched power converters is an active
area of research, both in the power electronics area [2],

[3] and in automatic control theory [4], [5]. This is due to the
fact that power converters are, generally speaking, a ubiquitous
power source whose applicability ranges from electrodomestics
and digital computers to industrial electronics and sophisticated
communications equipment. From the theoretical viewpoint,
they also constitute an interesting class of discontinuous non-
linear systems regulated by means of a commanded switch po-
sition function. These features make switched power converters
attractive for both theoretical and practically–oriented studies.

In this paper we explore the performance enhancement of
Power Factor Precompensators (PFP) via adaptive nonlinear
control techniques. The topology of the PFP circuit studied in
the present work consists of adiode bridgeand associated boost
converter. This circuit is the most widely employed of the fam-
ily of PFP’s even though it exhibits certain drawbacks such as
the slight deformation in the signal around the zero crossing.

We propose annonlinear feedback controllerdesigned fol-
lowing a dissipativity approach to which adaptation has been
added to cope with parametric uncertainties. The closed loop
performance accomplish the twofold control objective: first, to
achieve a nearly unit power factor at the input of the converter,
and second, to achieve efficient load voltage regulation to a de-
sired constant level. By defining a reference signal tracking
problem on the input current of the converter, the power fac-
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tor can be made very close to unity as long as the tracked cur-
rent signal is a scaled replica of the input voltage. Hence, the
source will see the controlled system as the same equivalent re-
sistor at each harmonic frequency. Our solution considers the
main parameters of the system (the capacitance and the induc-
tance) and of the applied load as unknowns; we also allow for
harmonics in the voltage source. While in the case of known
system parameters the problem can be solved with conventional
control techniques, the required bandwith of the current control
loop can easily become excessive. As an alternative, we devel-
oped a controller that utilizes the information about the structure
of the system and disturbances to improve performance, and to
significantly reduce the bandwith of the current loop.

The use of a system model representation in terms of the in-
put current, instead of the usual inductor current, is instrumental
for our developments. This allows us to treat the problem of
harmonic contents in the input voltage in a more natural way.
The input voltage can then be expressed in the form of Fourier
series, where the coefficients are unknown constants. The re-
sulting controller will have a familiar and simple form which is
suitable for implementation, where the most relevant feature is
the introduction of a bank of second order filters, with resonant
frequencies corresponding to the harmonic under consideration.

II. SWITCH-REGULATED BOOST CONVERTER AS APFP

In this section we formulate the control problem of the PFP
whose circuit is shown in Fig. 1.
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Fig. 1. Switch–regulated PFP Boost circuit



The differential equations describing the circuit dynamics are

L
d

dt
iL = �uvC + vi

C
d

dt

�
v2C
2

�
= uvCiL � P0 (1)

whereiL andvC are the inductor current and the capacitor volt-
age variables, respectively; notice thatiL = jiij with ii the input
current (the current on the ac side);vi(t) = sign(ii)vS is the
voltage measured at the diode bridge output;P0 represents the
output power load, it may be a simple constant power source,
it may also include the effect of a load resistance or simply a
constant current source;C andL are the capacitance and in-
ductance of the circuit, respectively;u, which takes values in
the discrete setf0; 1g, denotes the switch position function and
acts as the control input. For the controller design purposes we
will consider the averaged model, i.e., the signalu, originally of
discrete nature, will be considered as a continuous signal repre-
senting the duty ratio of a PWM switching sequence generated
at a relatively high frequency.

Thecontrol objectiveis twofold. First, in order to guarantee
a power factor near unity, the input currentii should follow a
signal proportional (same shape and phase) tovS , i.e.,

ii ! i�i = gvS (2)

whereg is a gain yet to be defined. This gain represents the
conductance of the equivalent resistor seen by the voltage source
for a given loadP0 under a unitary power factor functioning.

Second, the dc component of outputvC should be driven to
some constant desired valueVd > V . Here and in what fol-
lows we consider the dc component as the average of a sig-

nal taken over a period of the fundamental, that is,hx(t)i0
4
=

1
T

R t
(t�T )

x(�)d� .
We will assume that the system parametersL, C and the load

powerP0 are unknown quantities that may vary slowly or in
steps due to changes in the system. Moreover, we will assume
that the source voltage can be described with Fourier series

vS =
X
k2H

�>k VS;k (3)

where

�k =

�
cos (kwt)
sin(kwt)

�
; VS;k =

�
V r
S;k

V i
S;k

�

numbersV r
S;k, V i

S;k 2 IR are thekth harmonic coefficients
of the Fourier series description of the source voltage. They
are also assumed unknown constants (or slowly varying) and
H = f1; 2; 3; :::g is the set of indices of the harmonic compo-
nents considered. Superscripts(�)r and(�)i are used to distin-
guish the coefficients associated withcos (kwt) andsin(kwt),
respectively.

III. C ONTROLLER DESIGN

To design a controller that considers avS with harmonic con-
tents we find it more convenient to rewrite the model above us-
ing the following coordinate transformations

ii = sign(ii)iL ; vi = sign(ii)vS

z2 =
v2C
2

; e = uvC

Thus, in open sets excluding the zero crossing points1, i.e.,8t
such thatii(t) 6= 0, the model can be rewritten as

L
d

dt
ii = �sign(ii)e+ vS (4)

C
d

dt
z = ejiij � P0 (5)

wheree, the voltage across the transistor, represents the actual
control input. Moreover, to accomplish the control objective,z
should be driven towardsV 2

d =2. We will assume that the dy-
namics ofii is much faster than the dynamics ofz, and we will
thus treat both dynamics separately for control design purposes.

A. Inner control loop

In this subsection we design a controller which guarantees
tracking of ii towards its desired referencei�i computed as in
(2). It is straightforward to show that the following controller
stabilizes subsystem (4), and guarantees thatii tracks its desired
referencei�i

e = sign(ii)

�
�L

d

dt
i�i + vS +K1

~ii

�
(6)

where~ii = ii � iid andK1 > 0 is a design parameter.
Notice that, both the time derivative ofi�i and the parame-

ter L are required in order to implement the controller above.
In what follows we will show how this term can be estimated
by means of adaptation using the description of source voltage
vS in Fourier series (its harmonic components) to simplify this
computation.

Using (2) and (3) we can develop the term containing the time
derivative as follows

L
d

dt
i�i = L (g _vS + _gvS) =

X
k2H

�>k L ( _g � kwgJ )VS;k (7)

where we have used the fact that

_vS = �
X
k2H

kw�>k J VS;k ; J = �J > =
h

0 �1
1 0

i

Now, we define the vector

�k = L ( _g � kwgJ )VS;k ; k 2 H (8)

which for eachk 2 H practically converges towards a constant2.
Eq. (7) can be further reduced to

L
d

dt
i�i =

X
k2H

�>k �k

1We point out that not much attention is given at the zero crossing points (ii =
0) in the control design since, as will be shown later, the controller has no other
option than taking a zero value at all these points due to physical limitations.
2Ideally g and _g should vary slowly and take constant values in the steady

state.



where vector�k is unknown. Thus, we propose to use an es-
timate �̂k in the control expression (6) above, this yields the
controller

e = sign(ii)

 
�
X
k2H

�>k �̂k + vS +K1
~ii

!
(9)

Subsystem (4) in closed loop with controller (9) yields the
following error dynamics

L
d

dt
~ii =

X
k2H

�>k ~�k �K1
~ii (10)

where~�k
4
= �̂k � �k.

To deal with the terms associated with the error signals~�k we
propose the following energy storage function

W =
L

2
~i2i +

X
k2H

1

2k

��
~�r
k

�2
+
�
~�i
k

�2�

whose time derivative along the trajectories of (10) is given by

_W = �K1
~i2i +~ii

X
k2H

�>k ~�k +
X
k2H

_~�
>

k
~�k

k

which is forced to be negative semidefinite if the error on the
estimates is constructed according to the following adaptive law

_̂
�
r

k = �k~ii cos (kwt) ; k 2 H

_̂
�
i

k = �k~ii sin(kwt) ; k 2 H

or in a more compact form

_̂
�k = �k~ii�k ; k 2 H (11)

wherek > 0, k 2 H are design parameters.
It is easy to see that~ii ! 0 ast ! 1 as long ase is well

defined for allt. Moreover,~� ! 0 ast ! 1 as long as~iL !
0. Unfortunately, as will become clear later, this can only be
guaranteed in open sets of time, sincee, which is restricted to
take values only in a positive interval, attempts to take negative
values at the beginning of every half cycle. This problem can be
alleviated if, for instance,L is chosen very small.

The controller (9) with adaptive laws (11) can be further sim-
plified using the following transformations

	r
k = ��>k �̂k ; k 2 H

	i
k = ��>k J �̂k ; k 2 H

The controller (9) is reduced to

e = sign(ii)

 X
k2H

	r
k + vS +K1

~ii

!
(12)

and the adaptive laws can be rewritten as

_	r
k = k~ii � kw	i

k ; k 2 H
_	i
k = kw	r

k ; k 2 H

Expressing the dynamic extension (the adaptations) in the
form of a transfer function~ii 7! 	r

k, since in the controller
above only the terms	r

k (k 2 H) appear, this yields

	r
k =

ks

s2 + k2w2
~ii ; k 2 H (13)

B. Outer control loop

Direct substitution of controller (9) and (11) in the second
subsystem (5) yields the following system (in terms of the in-
crements ofz)

C _~z = �ii
X
k2H

�>k �̂k + jiijvi + iiK1
~ii � P0 (14)

where~z = z �
V 2

d

2 .
As pointed out before, we consider that the dynamics of the

subsystem (10) are much faster than the dynamics of subsystem
(14), and moreover, that the controllere is bounded, which is
true if all terms�̂k (8k 2 H) are bounded. Thus, in a relatively
short time, practically~ii = 0 and�̂ = �, and the model reduces
to

C _~z = �gvS
X
k2H

�>k �k + gv2S � P0

where we have used the fact sign(i�i ) = sign(vS).
Moreover, since we are mainly interested in the behavior of

the dynamics of the dc component of~z, we should neglect the
higher order harmonics at the right hand side of the equation
above, this yields

C _~z = �hgvS
X
k2H

�>k �ki0 + ghv2Si0 � P0

Notice thathv2Si0 is nothing else than the square of the RMS
value ofvS , i.e.,v2S;RMS = hv2Si0.

The first term on the right hand side (RHS) can be rewritten,
using (3) and (8), as

hgvS
X
k2H

�>k �ki0 = h
X
k2H

�>k gVS;k �
X
k2H

�>k L _gVS;ki0

�h
X
k2H

�>k gVS;k �
X
k2H

�>k LgkwJ VS;ki0 (15)

We observe that the second term at the right hand side of (15)
will contain the products of orthogonal rotating vectors at the
same angular speed, plus harmonics components of higher or-
der, thus its dc component will be zero. On the other hand, the
first term on the RHS contains harmonic components of higher
order plus products of colinear rotating vectors which will pro-
duce squares of sinusoidal functions (and thus a dc component)
plus higher order harmonics. Thus (15) is reduced to

hgvS
X
k2H

�>k �ki0 = Lg _g
X
k2H

h
�
�>k VS;k

�2
i0

but notice thath
�
�>k VS;k

�2
i0 = jVkj

2

2 and thus

X
k2H

h
�
�>k VS;k

�2
i0 = v2S;RMS

It is common practice in applications to obtaini�i as follows

i�i =
GvS

v2S;RMS

(16)



this is equivalent to make the following transformation in our
developments

G = gv2S;RMS

This simple useful transformation keeps the values of most vari-
ables on the same order of magnitude, and thus reduces the error
in numerical computations. Notice that the value ofg is usually
very small.

Finally, the error model can be written as

C _~z = �
LG _G

v2S;RMS

+G� P0 (17)

We propose to computeG as

_G = �K 0
i~z �K 0

p� (18)

� =
sa

s+ b
~z (19)

wheres is the complex variable andK 0
p,K

0
i, a andb are positive

design parameters.
The form of this controller is motivated from the form of a

simple PI, where� represents the signal_~z filtered by means of
a first order filter which is denoted in control literature as the
“dirty derivative”. We observed that direct use of~z in the com-
putation ofg (using a normal PI) causes the introduction of more
harmonics which will in principle deform the shape of reference
i�i causing the degradation of the power factor. The controller
(18)–(19) can be rewritten in a more convenient form as follows

_G = �Ki~z +Kp� (20)
_� = b(~z � �) (21)

whereKi = K 0
i +K 0

pa andKp = K 0
pa.

It can also be written in the form of a transfer function having
as input~z and outputG

G

~z
= �

Kis+ (Ki �Kp)b

s(s+ b)

which turns out to be a simple lead–lag type controller plus an
integrator.

Let us study now the local stability of the closed loop system
composed by (17), (20) and (21). Linearization of these equa-
tions around the equilibrium point[~z; G; �]T = [0; P0; 0]

T ,
gives2
64

_~z
_~G
_�

3
75 =

2
64

LP0Ki

Cv2
S;RMS

1
C

�
LP0Kp

Cv2
S;RMS

�Ki 0 Kp

b 0 �b

3
75
2
4 ~z

~G
�

3
5 (22)

where ~G
4
= G�G.

System (22) is stable provided the following conditions on the
design parameters are fulfilled

Ki > Kp ; Ki <
Cbv2S;RMS

LP0

Cv2S;RMS

LP0b
Kp > Ki(C +Ki) �= K2

i (23)

where the last condition is a little conservative.
Fig. 2 presents a block diagram of the inner control loop in-

tegrated by (12), the bank of second order filters (13) and the
outer control loop composed by a lead–lag plus integrator filter.
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Fig. 2. Block diagram of the proposed controller composed by the inner and
outer control loops

IV. EFFECTS OF SWITCHING ON THE POWER FACTOR

In this section we study system limitations due to constraints
on the control inputu 2 [0; 1]. For simplicity we consider
a sinusoidal voltage source, i.e.,vS = V sin(wt) (v2S;RMS =

V 2=2) and we assume that in the steady state
� vC = Vd,
� ii = i�i (at least at the end of every half cycle)
� g = 2P0

V 2

� �̂1 = [2wLP0=V; 0]
>

Theequivalent controller, i.e., the controller that keeps zero
tracking error is given by

ueq =
V

Vd
j sin(wt)j �

2wLP0

V Vd
sign(sin(wt)) cos(wt)] (24)

Let us focus only on the first half cycle, i.e.,0 � wt � �. We
observe from (24) thatueq takes negative values at the beginning
of each half period. The controller is thus maintained inu = 0
and we can solve foriL from (1) consideringiL(0) = 0, this
yields

iL(t) =
V

wL
(1� cos (wt))

The controller is maintained atu = 0 until the trajectory of
iL reaches the tracking reference signal that occurs atwt = �

� = 2arctan

�
2wLP0

V 2

�
(25)

The trajectory of the inductor current, in steady state, is ap-
proximately

iL(t) =

�
V
wL

(1� cos (wt)); 0 � wt � �
2P0
V

sin(wt); � < wt � �
(26)

Theac–line currentii(t) given by

ii(t) = iL(t)sign(sin(wt)) (27)
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Fig. 3. Input current time response.

has the alternate symmetrical form shown in Fig. 3
Therefore perfect tracking of the current can only be guaran-

teed in open intervals, remaining thus a pulsating alternate signal
on the tracking error~ii.

To avoid possible errors in the estimation of�k; k 2 H due to
the unavoidable pulsating current tracking error, we propose to
freeze the adaptation on these intervals, where, as stated before,
u attempts to take negative values. This can be carried out by
selectingk as follows

k =

�
k ; u > 0; k 2 H
0 ; u � 0; k 2 H

(28)

whose effect, according to the actual implementation presented
in the point (i) above, consists in disconnecting the second order
filters (13) from the controller of Fig. 2.

V. SIMULATION RESULTS

Computer simulations were performed to evaluate the pro-
posed feedback controller. We used a resistor and a current
source as the output load, as shown in Fig. 4 (controller deriva-
tion is completely analogous to the case of constant power load).
The system parameters wereL = 1mH, C = 450�F. The
source voltage is composed of the fundamental, 2nd and 3rd

harmonic

vS(t) = 162:6 sin (wt)�15 cos (2wt�0:25)�10 cos (3wt�0:2)

wherew = 2��60 rad/s and its RMS value isvS;RMS = 115:7.
The desired output voltage is fixed toVd = 400 Volts with a
maximum output powerP0;max = 250 W. The design parame-
ters were selected as follows:K1 = 15,K 0

p = 2:5 (Kp = 3:75),
K 0
i = 0:1 (Ki = 3:85), a = 1:5, b = 450, 1 = 100, 2 = 200,

3 = 300. Notice that these parameters largely fulfill conditions
(23).
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Fig. 4. Simulated circuit.

To test the robustness of the proposed controller against dis-
turbances in the load we have applied a step change in both,
the current load and the load resistance. The system starts with
R = 2000
 and i0 = 0 Amp, then att = 1:5 we change
R = 2000
 to R = 1000
 preservingi0 = 0 Amp, finally at
t = 3:5sec we introducei0 = 0:2 Amp, preservingR = 1000
.
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Fig. 5. Time responses for(Top) voltagevC and (Bottom) g, starting with
R = 2000
 andi0 = 0, then att = 1:5sec we changeR = 2000
 to
R = 1000
 preservingi0 = 0 Amp and finally att = 3:5 we introduce
i0 = 0:2 Amp preservingR = 1000
.
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(a) Starting conditionR = 2000
 and i0 = 0 Amp, (b) Changing load
resistanceR = 1000
 with i0 = 0 Amp and(c) Introducing a current
i0 = 0:2 Amp with R = 1000
.

Fig. 6 shows the time responses of voltagevC and the ampli-
tudeg of the reference current under the proposed dissipativity
control for the conditions of the test mentioned above. For im-
plementation we have usedG as described before, thus, we have
dividedG byv2S;RMS to recoverg which appears in Fig. 6. Then



in Fig. 5 we observe the steady state responses of the current
iL together with the scaled input voltagevS for the same three
conditions previously mentioned. In Fig. 7 we exhibit the pro-
portional relationship that is established betweenii(t) andvS(t)
for the three situations shown in Fig. 5, where the magnitude of
the slope coincide with the value ofg, i.e., (a)g = 0:006
�1,
(b) g = 0:012
�1 and (c)g = 0:018
�1. In Fig. 8 we com-
pare the tracking errors between the proposed controller (top)
and a controller where the bank of 2nd order filters are substi-
tuted by a conventional PI controller (bottom). We observe that
the proposed controller has significantly smaller error; the er-
ror observed here is due mainly to the unavoidable distortion
at zero crossings. This distortion increases as the load demand
increases, as predicted by the analysis.
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Fig. 7. Currentii(t) versusvS(t) for the three situations:(a) Starting condition
R = 2000
 andi0 = 0 Amp, (b) Changing load resistanceR = 1000

with i0 = 0 Amp and(c) Introducing a currenti0 = 0:2 Amp with R =
1000
.
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Fig. 8. Current tracking error~ii(t) for (Top) proposed controller and(Bottom)
replacing the bank of 2nd order filters by a conventional PI.

VI. CONCLUSIONS

The paper presents an adaptive controller for the power fac-
tor precompensator based on boost converter topolgy. The con-

troller guarantees fast regulation of the output voltage towards a
desired constant value with a power factor close to unity. These
objectives are fulfilled even in the presence of harmonics on the
voltage source and uncertainties on the system parameters and
load. The overall controller consists of a cascade interconnec-
tion of two compensators, namely the inner and the outer control
loop. It is shown that while the latter turns out to be a simple
lead–lag plus integration, the former is composed of second or-
der filters tuned at the frequencies of the considered harmonics.
Several simulations are provided to assess the performance of
the proposed controller.
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