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Abstract

Randomized modulation of switching in power con-
verters holds promise in reducing input filtering re-
quirements and in reducing acoustic noise in motor
drive applications. This paper is devoted to issues
in analysis and synthesis of randomized modulation
schemes based on finite Markov chains. The main
advantage of this novel type of randomized modula-
tion is the availability of an explicit control of time—
domain performance, in addition to the possibility
of shaping the power spectra of signals of interest.
Numerical (Monte Carlo) and experimental verifica-
tions for our power spectral formulas are presented.
We also formulate representative narrow— and wide—
band synthesis problems in randomized modulation,
and solve them numerically. Our results suggest that
randomized modulation is very effective in satisfying
narrow-band constraints, but has limited effective-
ness in meeting wide-band signal power constraints.

Keywords: power electronics, power converters,
randomized modulation, Markov chains

1. Introduction

Switching power converters are designed to convert
electrical power from one form to another at high ef-
ficiency. The high efficiency is obtained by using only
switching devices, energy storage elements and trans-
formers (all of which are ideally lossless), and relying
on appropriate modulation of the switches to convert
the available AC or DC voltage/current waveforms of
the power source into (approximately) the AC or DC
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waveforms required by the load.

Converter waveforms that are periodic have spectral
components only at integer multiples of the funda-
mental frequency. The allowable harmonic content of
some of these waveforms is often constrained. Thus
stringent filtering requirements may be imposed on
the power converter. A significant part of a power
converter’s volume and weight can thus be due to an
input or output filter. Similar requirements hold for
acoustic noise control in motor applications. Har-
monic components -of the motor voltages and cur-
rents may excite mechanical resonances, leading to
increased acoustic noise and to possible torque pul-
sations. Solutions to these problems include either
a costly mechanical redesign, or an increase in the
switching frequency of the power converter supply-
ing the motor, which in turn increases the switching
power losses.

As the use of pulse-width modulation (PWM) tech-
nology and microprocessors in power converters ma-
tured during the early eighties, new methods became
available to address the effects of acoustic noise in
DC/AC converters supplying motors, and the effects
of electromagnetic interference (EMI). While most of
the engineering effort’ was directed towards the op-
timization of deterministic PWM waveforms (“pro-
grammed switching”), an alternative in the form of
randomized modulation for DC/AC conversion was
offered in [11}. The same idea has been pursued in-
a DC/DC setup in [10], and in numerous references
afterwards, for example [3, 4].

All prior results with random modulation, with the
exception of [7], are based on schemes in which suc-
cessive randomizations of the switching pulse train
are statistically independent and governed by invari-
ant probabilistic rules. “We denote such schemes as



stationary. While these implementations tend to be
very successful in achieving certain kinds of spectral
shaping in the frequency domain, they offer no guar-
antee or even description of the time-domain perfor-
mance that accompanies the switching. This is ob-
jectionable in many cases, for example when accumu-
lated deviations of the randomized switching wave-
form from the nominal (deterministic) waveform give
rise to inadmissible variations in related currents and
voltages.

In this paper we describe a generalization of the class
of stationary randomized modulation schemes [7],[8]
that enables explicit control of the time—domain per-
formance of randomized switching, in addition to
spectral shaping in the frequency domain. In this
technique, the switching signal ¢(t) comprises a se-
quence of distinct waveform segments, chosen in se-
quence according to a Markovian model. In develop-

ing an analysis approach for this class of randomized-

signals, we present previous results from communi-
cation theory that are not well known outside that
community, and develop some new results as well.
We also pose and solve numerically certain synthesis
problems that are formulated to assess the effective-
ness of randomized modulation in achieving various
performance specifications in the frequency domain.
This paper is an abridged version of [9] where a more
detailed exposition can be found.

2. Autocorrelation and Power Spectrum

The time-average autocorrelation [6] of a ran-
dom process z(t) is defined as

.1 ¥
()= Jim = /_ | Ele)e(r +0)dt, (1)

where the expectation E[e] is taken over the whole
ensemble, [#]. The process is termed quasi-stationary
[6] if this limit (and a similar one for E[z(?)]) exist.
This definition is applicable to deterministic signals
as well, since for deterministic signals the ensemble
consists of a single member. The (mean or average)
power density spectrum S;(f) is then defined as
the Fourier transform of Rx(7):

si=[ R @

-0

In cases of practical interest, Sz (f) can have a contin-
uous and an impulsive part [1]. The impulsive part of
Sz(f) is referred to as the discrete spectrum, and it
is characterized entirely by the locations fy, fa, ... of
the impulses (“line frequencies”, “harmonic frequen-
cies”) and by positive numbers p;, pz, . . . representing
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the strengths of the impulses (i.e. the signal power
at the harmonic frequencies). Integrating Sz(f) over
a frequency range yields the signal power in that fre-
quency range.

3. Modulation Based on Markov Chains

3.1. Concept of Switching Governed by
Markov Chains

In this section we consider the class of randomized
modulation schemes in which the switching signal g(t)
comprises a sequence of distinct waveform segments,
chosen according to the state of a Markov chain. A
switching waveform segment of length T}, is associated
with the Markov chain being in the k-th state. Since
the switching pattern in one cycle can be made de-
pendent on the state of the underlying Markov chain,
an additional degree of flexibility is available. State
transition probabilities can be chosen so that large
deviations from desired average steady-state behav-
jor are discouraged or prevented altogether. Elec-
tronic circuits that implement switching based on a
Markov chain are not necessarily more complicated
than circuits employed in stationary modulation, as
demonstrated by the realizations described in [7].

3.2. Power Spectra Generated by Ergodic
Markov Chains

Ergodic Markov chains (i.e irreducible and aperi-
odic chains [5])) are considered in this section. Our
goal is to analyze the continuous-time switching
waveforms associated with an n—state discrete-time
Markov chain. The chain is characterized by the nxn
state transition matrix P = [Pg,;]. This matrix is a
stochastic matrix, i.e. its rows sum to 1.

At a state transition from state k, a switching cy-
cle of length T is generated. The switching function
waveform ¢(t) is a concatenation of such cycles. We
assume throughout that the Markov chain is in steady
state. The steady-state probabilities (also called in-
variant probabilities) of the chain can be found from

[5]:

nmpP=1

‘Z:Hk =1
k=1

The row vector II is thus the normalized left eigenvec-
tor of the matrix P corresponding to the eigenvalue
1, and its existence follows from the assumed ergodic-
ity of the underlying Markov chain. The correspond-
ing right eigenvector is 1n, an n-vector of ones. The
entry II; can also be interpreted as the fraction of

©)
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Figure 1: An example of switching governed by an er-
godic Markov chain.

a (large) total number of state transitions that the
chain spends in state k.

Due to its technical nature, for a detailed derivation
of spectral formulas the reader is referred to [9]. The
end result for the continuous power spectrum is

Sea(f) = U(HFIOF(f) + (OF ()T - JU(f) (5)

while the final result for the intensities of the impulses
(“lines” in the discrete spectrum) is

k 1 ko

Sa(p) = 7 | TU() | (®)

We use U(f) to denote the vector of Fourier trans-

forms of the waveform segments associated with

states of the Markov chain; © is a diagonal ma-

trix with steady—stateAprobabilities o, F(f) =

Yom=1(Q(f))™ where Q(f) has entries Q¢ (f) =

[P}, e~d QWT"I].

3.2.1 An Example of Switching Governed
by a Markov Chain: Consider a scheme for
DC/DC converters. Suppose we have two kinds of
duty ratios D. available: long, L, D=0.75; and short,
S, D=0.25. The duty ratios have the desired aver-
age of 0.5, but we want to discourage long sequences
of pulses of the same kind, thus preventing ripple
buildup. We introduce a 4 state Markov chain, corre-
sponding to the following policy. The controller ob-
serves the last two pulses and if they are SL or LS,
then either of the pulses is fired with probability 0.5
for the next cycle. If the pair observed is LL, then
an S pulse is applied with probability 0.75 (and an L
pulse with probability 0.25). If the pair observed is
SS, then an L pulse is applied with probability 0.75
(and an S pulse with probability 0.25). The chain is
shown schematically in Fig. 1.

The theoretical discrete and continuous spectra cor-
responding to our. example are shown in Fig. 2,
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Figure 2: Calculated power spectrum of g(t) for the
Markov chain example of Section 3.2.1.

where unit frequency corresponds to the switching
frequency. The measured power spectrum in the
same case is shown in Fig. 3. -The circuit used for
experimental verification was a down (or buck) con-
verter, without the output capacitor, and the nominal
switching frequency was-10 kHz. .Our experimental
experience is that randomized modulation schemes
based on Markov chains are not more difficult to im-
plement than the schemes reported -earlier in the lit-
erature. For example; only a two-bit random number
generator and a state counter are needed to_imple-
ment the Markov chain of this example.

The results can be compared with *deterministic
switching at a constant ‘duty ratio of 0.5, in which
case only the discrete spectrum: exists, with a first
harmonic of ;15— = 0.1013, for example (and subse-
quent odd harmonics reduced by ;).

Another meaningful comparison-is with a randomized
PWM scheme in which a random choice is made at
each trial between duty ratios of 0.25 and 0.75, inde-
pendently of previous outcomes. Results for random-
ized PWM can be found for example in [7]. Whilethe
two schemes are quite similar in terms of their power
spectra, their time—domain performance is very dif- :
ferent. As an example, let us.consider the event “five
successive long (L) pulses” in both schemes. This . .
event could be of interest, since it is associated with
a fairly large net buildup. of the local duty-ratio. -In
the case of independent randomized PWM, probabil-
ity of “5 L in a row” is (1/2)® = 0.03125 [7]. In the
case of the modulation based on the Markov chain
from the example, the probability of the same event
equals 0.2 x (1/4)® = 0.003125 [7], i.e. it is reduced
ten times. These results have been verified both in
simulations and in an actual circuit implementation.

3.3. Periodic Markov Chains .
The case of pulse trains specified by a class of pe-
riodic Markov chains is considered in this section.
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Figure 3: Measured power spectrum of ¢(t) for the
Markov chain example.

A related result for the special case of synchronous
Markov chains is given in [2]. It is assumed that the
state of the chain goes through a sequence of N classes
of states Ci, occupymg a state in each class for an av-
erage time Ty, | = 1,- ., N. In the power electronic
setup, periodic Markov chams are of interest in ran-
domized modulation for DC/AC applications, where
the basic (reference) on—off pattern changes from one
cycle to the next in a deterministic fashion. This
pattern is further dithered in each cycle using a set of
dependent (Markovian) trials in order to satisfy time—
domain constraints (for example to control the local
time-average, or “ripple”, of waveforms of interest).

The conditioning used in the derivation of the power
spectrum formula in the previous section has to be
adjusted in the following way. The contribution that
states of the Markov chain belonging to the class
Ci make to the time-averaged autocorrelation (1) is

scaled by Ti/ v, T3, where T is the expected time
spent in the class Cj, before a transition into the class
Ci41 (we evaluate these quantities later).

Let P, denote the product of submatrices of P in
the following order P; = Py, --- P23Pya, and let II*
denote the vector of the steady-state probabilities,
conditional on the system being in class Cy. Then

n'=mt p )

and the average time spent in class C) is T, =
5. 11T, where the summation is taken over all
states in class Cj.

Let T = 3N T, and let ©; = diag(I*). When
we add the contributions of all classes to the average
power spectrum (scaled by the relative average dura-
tion of each class, as explained before), the result can
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be written in the following compact form

Z Ly (1)0sta(f) + 2Re(15 514)]

Z 6(f—-—)

l==c0

S:(f) =

+= Re 1%541, (8)

T

where T' is the greatest common denominator of all
waveform durations, 1 is an N x1 vector of ones and
Uy is the vector of Fourier transforms of waveforms
assigned to states in class Cj. A circular indexing
scheme (i.e. modulo N) is used in this subsection.

The matrix S, has a Toeplitz structure, with (k,{)-th
entry

sckl(f)__U (AU = AN~ A a(HUIS) (9)

where Ag Is a produét of N matrices

=Qr-t1,k (10)

Qk,k+1

and

Api= Qo1 - Qr k1 (11)
with no repetitions allowed in Ag i, so that the num-
ber of matrices forming Aggis N- | k—1]. Also

Sara(f = ) = U,f’ (f= T)n"(n Y'Ui(f = ;)

(12)
The result (8) appears to be novel {7], and it is will
be now verified via an example.

3.3.1 An Example of Switching Governed
by a Periodic Markov Chain: In this example we
consider a simplification of a switching scheme appli-
cable for DC/AC converters. The goal is to generate
a switching function in which blocks of pulses have
duty ratios

[0.5, 0.75, 0.5, 0.25]

It is also desirable to prevent large deviations of the
“local” average from values in the corresponding con-
ventional (deterministic) pulse train. The periodic
Markov chain shown in Fig.4, with 8 states divided
into 4 classes, is an example of a solution to such a de-
sign problem. We analyze this chain using (8), and in
Fig.5 we compare the theoretical predictions (dotted
line) with results obtained via Monte Carlo simula-
tions (solid line). The agreement between the two is
quite satisfactory. An application of (8) for Markov
chains with many more classes of states could become
computationally intensive. This is not a major draw-
back, however, due to the off-line character of the
calculation. In Fig. 6 we show the experimentally ob-
served power spectrum for the same periodic Markov
chain.
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Figure 4: Periodic Markov chain with 8 states and 4
classes.
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Figure 5: Estimated and calculated spectrum for the
periodic Markov chain with 8 states and 4
classes.

4. Synthesis Problems

In this section the goal is to-explore how effective
randomized modulation is in achieving various per-
formance specifications in the frequency domain. De-
sirable properties of power spectra are dependent on
the particular application. Requirements of particu-
lar interest in practice are the following:

@ Minimization of one or multiple, possibly
weighted, discrete harmonics.  This criterion
corresponds to cases where the narrow—band
characteristics corresponding to discrete har-
monics are particularly harmful, as for example
in acoustic noise, or in narrow-band interfer-
ence.

¢ Minimization of signal power (integral of the
power spectrum) in a frequency segment that
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Figure 6: Measured power spectrum for the periodic
Markov chain ‘with 8 states and 4 classes.

is of the order of an integral multiple of the
switching frequency. This criterion corresponds
to wide-band constraints in military specifica-
tions, and it could be of interest for EMI prob-
lems. ‘ '

A typical narrow—band -optimization’criterion is -a
weighted sum of discrete harmonic. intensities be-
tween the I-th and L-th harmonics, and .is denoted
as Jﬁ-,B . A reasonable wide—band optimization crite-
rion, used for illustration in this section; corresponds
to the minimization of the ‘signal power in the fre-
quency segment [0, 1.5], where the average switching
frequency is 1.

The optimization proceés has to address two related
issues:

1. Design of an n-state Markov chain {possibly pe-
riodic), which reduces to the specification of a -
stochastic matrix P;

2. Choice of n 0-1 functions, each suppdrted'on
[0, T%), that correspond to distinct cycles of the
switching function.

While the criterion functions are defined in the fre-
quency domain, the design is performed in the time-
domain. This makes the optimization problem- diffi-
cult, and we present and comment on numerical re-
sults.

Synthesis problems for randomized modulation gov-
erned by Markov chains will be illustrated on the ex-
ample from section 3.2.1. The transition probabilities
p1,2 from state 1 to state 2, and P23 from state 2 to
state 3 will be optimized; while the symmetry of the



chain is preserved. Thus the transition matrix is

P2 l—pi2 0 0
p= 0 0 P23 l—p23
1—p23 P23 0 0
0 0 1-p12 P12

(13)
The duty ratios of the short and long pulses are also
made variable, with the same average value D = 0.5
as in the original example. The optimized narrow-
band criteria are shown in Table 1. Thus a consider-
able improvement in criterion value is attained as a
consequence of optimization. In the table randomized
PWM corresponds to independent, equally likely tri-
als with D, = 0.25, Dy = 0.75, the standard Markov
chain is characterized with probabilities and duty ra-
tios p1 2 = .75,p23 = .5,D; = 0.25, Dy = 0.75, while
the optimal chain is p; 2 = .75,p23 = .5,D; = 0.05,
Dy = 0.95 It is evident that switching based on a

Table 1: Narrow-band optimization, Markov chain ex-
ample, criterion values (x107*).

| Modulation [ JVE | a4

Randomized PWM 263 613
Standard Markov Chain | 253 | 613
Optimal Markov Chain 0] 115

Markov chain is not particularly effective in reduc-
ing wide-band signal energy, as illustrated in Table
2. In this table randomized PWM and the standard
chain are as before, while the optimal chain is given
by p1,2 = .05,p23 = .95,D; = 0.22, D, = 0.77. The

Table 2: Wide-band optimization, Markov chain exam-
ple, criterion values (x107%).

[ Modulation [ J7E]

Randomized PWM 800
Standard Markov Chain 806
Optimal Markov Chain 786

purpose of our optimization procedures is to point
out salient capabilities of the randomized modula-
tion governed by Markov chains, and consequently
our searches were performed over granular grids.

5. Conclusions

In this paper we have presented analysis and synthe-
sis results for randomized modulation strategies gov-
erned by Markov chains, suitable for different classes
of power converters. Random modulation switching
schemes governed by Markov chains that are appli-
cable to DC/DC and DC/AC converters have been
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described and analyzed. Our spectral formulas for
periodic Markov chains are believed to be novel. Syn-
thesis problems in randomized modulation have also
been considered, where both optimization criteria and
numerical results are described. It is shown that ran-
domized pulse modulation can be very efficient in re-
ducing the size of discrete harmonics and in satisfying
narrow-band constraints, but is much less effective in
dealing with wide-band requirements.
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