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Analysis and Synthesis of Randomized
Modulation Schemes for Power Converters
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and David J. Perreault, Member, IEEE

Abstract— After establishing that the proper objects of study
for randomized modulation of converters are the power spectra
of signals, we classify such modulation schemes and present
associated spectral formulas, several of which are new. We also
discuss numerical (Monte Carlo) verification issues for. power
spectral formulas. A general spectral formula for stationary
randomized modulation schemes is presented, and specialized
to several modulation schemes of practical interest for dc/dc
converters. Analytical results are then given for block-stationary
randomized modulation schemes that are suitable for inverter
operation. In the process, we present results for several modu-
lation schemes that have been reported in the literature without
analytical explanations. Experimental verifications of some of our
analytical results are presented. We formulate narrow-band and
wide-band synthesis problems in randomized modulation, and
solve them numerically. Our results suggest that randomized
modulation is very effective in satisfying narrow-band power
constraints, but has limited effectiveness in meeting wide-band
constraints.

I. INTRODUCTION

ANDOMIZED modulation is of increasing interest in

power electronics. While implementation results have
been impressive, theoretical analysis has been limited so far.
This paper and the thesis [39] describe the basic theoretical
framework needed to address analysis and synthesis problems
for a large variety of randomized switching schemes, and they
also provide representative results.

Over the last three decades power converter designers have
resorted to randomized switching for different reasons. The
randomized switching concept apparently originated [6] at a
time when the switching frequency in dc/dc converters was
typically limited to the audible range. Faster devices eventually
offered a simple solution to the acoustic noise problem, at least
in dc/dc conversion, and randomized switching was set aside.
As PWM technology and microprocessors matured during the
early eighties, new methods became available to address the
effects of acoustic noise and of electromagnetic interference
(EMI). While most of the engineering effort was directed
toward the optimization of deterministic PWM waveforms
(‘“‘programmed switching’’), an alternative in the form of
randomized modulation using a microprocessor implementa-
tion was offered for dc/ac conversion in [48]. The same idea
has been pursued in a dc/dc setup in [45], and in numerous
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references afterwards, for example [11], [2], [20], [49], [47],
[211, [19], {121, [3], [44], [37], and [35]. When compared with
standard, periodic switching, randomized modulation tends to
increase the maximal time excursions of output waveforms that
depend on the switching function. These waveforms, however,
cease to be periodic and their properties in the time domain
are best characterized in a probabilistic framework.

As pointed out in {50], programmed and randomized switch-
ing are complementary techniques, and by combining them a
designer can achieve improved results. The theoretical setup
needed to analyze randomized switching schemes is, however,
quite different from the deterministic PWM analysis approach.
The natural quantity to study in a randomized switching
setup is the power spectrum (the Fourier transform of the
autocorrelation of a signal), and not the harmonic spectrum
(i.e., the Fourier transform of the signal itself). Note that
the Fourier transform of a random signal is itself a random
function, i.e., it is a random variable at each frequency. The
power spectrum, on the other hand, has much better properties
and can be estimated reliably from the available signal (see,
for example, [36]).

The lack of a proper framework for analyzing randomized
modulation is, in our opinion, the main reason why most
references contain only rudimentary analysis, and rely on plau-
sibility arguments. Judging by a sharp increase in the number
of papers describing randomized switching implementations
(over a dozen in 1992 alone), there exists a definite need
for a unifying analysis framework. This will not only make
evaluation and verification of different schemes possible, but
will also point out capabilities and limitations of randomized
modulation, which are largely not known at present.

Section II of this paper classifies randomized modulation
schemes. Section III provides an interpretation of present stan-
dards for harmonic distortion that allows them to be applied
to the power spectra arising from randomized modulation.
Section IV introduces the autocorrelation and power spectrum
for the class of signals of interest. In Section V we discuss
issues in numerical (Monte Carlo) verification of power spec-
tral formulas. Section VI characterizes the class of stationary
randomized modulation schemes, presents a general formula
for the power spectra of associated switching functions, and
describes specializations to randomized modulation procedures
of practical interest in dc/dc converters. The power spectrum
of a waveform that is related to the switching function through
a linear time-invariant relation is easily derived from the
power spectrum of the switching function. However, not all
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Fig. 1. Nominal switching functions in power converters: (a) dc/dc convert-
ers, and (b) dc/ac converters.

waveforms of interest are this simply related to the switching
function, and Section VII illustrates how to deal with these
cases. Section VIII discusses block-stationary randomized
modulation schemes that are suitable for dc/ac converters.
In Section IX we discuss synthesis problems in randomized
modulation, and present numerical results that suggest that
randomized modulation is well suited to meet narrow-band
constraints, while it is much less effective in satisfying wide-
band constraints.

II. CLASSIFICATION OF RANDOMIZED SWITCHING STRATEGIES

To find a common ground for comparisons among differ-
ent randomized modulation methods, we concentrate on the
switching function, denoted by ¢(t), which takes the value 0
when the controllable converter switch is off, and the value 1
when it is on (see Fig. 1). As already mentioned, the power
spectra of variables related to ¢(¢) by linear, time—invariant
operations can easily be derived from the power spectrum
of g(t). Power spectra for waveforms that are not related to
g(t) by such operations take more effort to determine (see
Section VII).

The main elements characterizing randomized modulation
schemes are the underlying (deterministic) nominal switch-
ing patterns and the probability laws governing the random
dithering of the nominal patterns. We have to check if the
nominal patterns, e.g., duty ratios, vary from one cycle to the
next, as they do in inverter operation. The other issue is the
time variation of the probability densities used to pick the
dither at each cycle. If the probabilistic structure is constant
from cycle to cycle, we call the switching stationary; if it is
constant only over a block of cycles (as in inverters), we call
it block-stationary. More general Markovian schemes, where
the probability density used for dither at a cycle depends on
past cycles via the state of a Markov chain at the beginning
of that cycle are discussed in [39], [41], and [42].

The basic analysis problem in randomized modulation is
to relate the spectral characteristics of ¢(t) and other related
waveforms in a converter to the probabilistic structure that
governs the dithering. The synthesis problem in randomized

modulation is to design a randomized switching procedure that
minimizes given criteria for power spectra. Practically useful
synthesis procedures include the minimization of discrete spec-
tral components (which we term narrow—band optimization),
and the minimization of signal power in a given frequency
segment (which we call wide-band optimization); these are
examined in Section IX, see also [39] and [41].

III. PERFORMANCE SPECIFICATIONS

International standards for power electronic converters [8],
(321, [38], [26], [5], [46}, [51], [17], [18] that operate off
an electric utility or in an FCC regulated environment are
aimed at periodically operated converters, and are given in
terms of Fourier components of the relevant waveforms. Thus,
constraints are on the harmonic spectrum, rather than on
the power spectrum, Note, however, that the power density
spectrum of a periodic function comprises impulses at the
fundamental and its harmonics, with strengths that are the
squares of the magnitudes of the corresponding Fourier com-
ponents. We can therefore map existing standards to the power
spectrum domain by simply squaring them. These power
spectral constraints can the be carried over to the nonperiodic
waveforms obtained by randomized modulation. Thus, we
interpret the standards as follows:

» Take the constraints on the power density spectrum to
equal the square of the magnitudes of the allowed har-
monic spectrum at any given frequency.

« For lower frequencies, where limits on the strength of the
60 Hz (or 50 Hz) fundamental are specified in existing
standards, take the corresponding power to be associated
with the total signal power in the frequency segment that
extends halfway toward the neighboring harmonics.

Present military standards are the only specifications with
both narrow-band and wide-band limits: the signal power for
waveforms of interest is subject to an integral constraint over a
band of frequencies (e.g., of 1 MHz width in the MHz range),
in addition to the more common narrow-band constraints that
are part of all civilian standards. The latest draft of new
military standards [30] replaces the two constraints with a
“‘medium-band’’ constraint (10 kHz in the MHz range). It is
shown in {39] that this revision of standards favors randomized
modulation.

IV. AUTOCORRELATION AND POWER SPECTRUM

A random signal may be thought of as a signal selected
from an ensemble (family) of possible signals by a random
experiment governed by some specification of probabilities.
The ensemble and the specification of probabilities together
comprise what is termed the random process (or stochastic
process) generating the random signal. The signal is termed a
realization of the process. We shall not distinguish notationally
between the process and a realization of it.

The (time—-averaged) autocorrelation of a continuous-time
random process z(t) is defined as

R.(7) = lim

W—ooo

w
% /_  Ble(a(r+ 0l (1)
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where the expectation operation FE|[-]is taken over the whole
ensemble. (The more common definition omits the time-
averaging, but the definition in (1) specializes in the desired
way to deterministic signals, where the ensemble consists of
just a single member.) The power density spectrum S, (f) is
defined as the Fourier transform of R.(7):

lo o}
Se(f) = / e ¥ Ry(7)dr. )
—0o0

In cases of practical interest S, (f) can have both a continuous
and an impulsive part [4], [52], [24]. The impulsive part of
Sz(f) is referred to as the discrete spectrum, and is char-
acterized entirely by the locations fi, fa,... of the impulses
(““line frequencies’’, ‘‘harmonic frequencies’’) and by positive
numbers pi, pa2, . . . representing the strengths of the impulses,
which equal the signal power at the harmonic frequencies.
When integrated over a frequency range, the continuous part
of S;(f) yields the signal power in that frequency range.

An important result for applications concerns the trans-
formation of the autocorrelation of a process z(t) when it
is passed through a stable linear, time-invariant filter. Such
a filter is characterized by its impulse response h(t) and
corresponding frequency response H( f), which is the Fourier
transform of h(t). The output y(t) of the system is given by
convolution

y(t) = / z(t)h(t — u)du. 3)
Using this relation, it can be shown [52] that the process y(t)
has a well-defined autocorrelation, whenever z does, and that
its power spectrum is

Sy(f) = H(f) |” S=(f). )

This relation can be used to evaluate the power spectrum of
any waveform related to the switching waveform ¢(t) through
a convolution, once the power spectrum of ¢(t) is known.

A random process z(t) for which

E(z(t)) = mq (5)
and

Elz(t)z(t + 7)) = Re(7), Vi, 7 6)

is termed wide-sense stationary (WSS, weakly stationary).
Thus, a WSS random process has a mean and autocorrelation
that are independent of the time origin (so that the time averag-
ing in (1) becomes unnecessary). Any stationary randomized
modulation generates a switching function that is wide-sense
stationary. This can be shown rigorously using the concept of
regenerative processes [24]. Special cases of this result can
also be found in [9], for example, or in [1] which uses theory
of stationary point processes.

Let Xow (f) denote the Fourier transform of the symmetri-
cally truncated version of z(t), extending from —W to +W.
An important result of the Fourier theory [4], [7], [23] due to
Einstein, Wiener and Khintchine, shows that if z(t) is a wide-
sense stationary process then S (f) is related to Xow (f) as
follows:

S(f) = Jim B | Xaw(DP). O

The quantity 53 | Xow(f) |* is called the periodogram
of z(t). For nonstationary processes that have a well defined
autocorrelation via (1), a weaker version of (7) holds, where
the equality is in the sense of distributions.

V. VERIFICATION ISSUES

The formulas that will be developed shortly for power
spectra of different randomized modulation schemes are rather
involved, and a need arises to verify and explore them through
simulation. (We also provide experimental verification in some
cases.) The power spectrum of a (Monte Carlo) simulation of
a randomized switching waveform ¢(t) is obtained through an
estimation procedure. Power spectrum estimation is one of the
most important problems in signal processing and has a very
rich history [34], [25], [31], [36], [27].

The discussion in this section deals primarily with direct
estimation methods that yield estimates of the power spec-
trum S,(f) without first estimating the autocorrelation. We
concentrate on nonparametric, classical estimation methods,
which are well understood and for which software is readily
available [36].

Classical direct estimation methods may be thought of as
approximate implementations of the operations specified in the
Wiener-Khintchine theorem (7). Typically, a single sampled-
data realization of the random process of duration 2KW is
divided into K sections, and the (sampled-data version of the)
periodogram is computed for each section. The availability
of the Fast Fourier Transform (FFT) to calculate the Fourier
transforms involved is a major advantage. The expectation
operation in (7) is then approximated by averaging the K
individual periodograms. This is referred to as Bartlett’s
method. Under appropriate conditions (related to ergodicity
of the stochastic process, which permits time averages to be
substituted for ensemble averages) this computation produces
a consistent, asymptotically unbiased estimate of the power
spectrum [14], [36], so the estimate converges to the true
spectrum as K — oo, W — oco. We shall assume that the
switching functions ¢(t) of interest to us satisfy the conditions
required for validity of such an estimation procedure. The close
match between our analytical formulas and the Monte Carlo
verifications suggest that this is indeed a good assumption.

Although the above estimation procedure is asymptotically
unbiased, in practice K and W are finite, so there is inevitable
bias. The use of appropriate windows in the time domain con-
tributes to bias reduction. An unpleasant effect of windowing
is known as leakage and has its source in the frequency-domain
sidelobes of the windows used.

Welch [36] modified Bartlett’s method by allowing data
segments to overlap, in addition to windowing data in the
time domain. This method is widely used and is available
in the Matlab [28] software package. A 50% overlap be-
tween the data segments produces good results in many
applications [36].

A brief discussion of the choice of parameters in implement-
ing Welch’s method is presented next; some further discussion
may be found in [40]. Let N denote the number of data points
in the simulated random signal, let M denote the number
of points in a data segment (N = K M), and let R denote
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Fig. 2. (a) The switching waveform ¢(¢), and (b) the pulse ui(t — &)
representing just the k-th cycle of g(t).

the number of points per cycle of the switching function
q(t). If R is set to 64, so that the duty ratio resolution is
better that 2%, then the spectrum can be estimated up to the
32nd harmonic (which is the Nyquist frequency). The spectral
estimate contains M/2 points (for positive frequency), and
if 32 points per unit frequency are desired, then M = 2048.
Thus, if K = 8, atotal of N = 16, 384 points is needed, which
is reasonable within the Matlab package. Given a constraint
on N, either M can be increased, thus improving resolution
but decreasing K and getting a more ‘‘jittery”’ estimate, or K
can be increased, thus reducing the frequency resolution but
obtaining smoother estimates. An overlap of M /2 between the
data segments improves the estimation results, essentially by
increasing the effective number of data segments K, while
keeping N fixed.

The trade-offs in spectral estimation described in this section
apply directly to digital spectral analyzers [13]. Similar trade-
offs arise with analog systems for spectral analysis [29], [10]
which utilize band-pass filters to isolate a narrow frequency
band of interest, followed by squaring devices and low-—
frequency filters to provide a spectral estimate.

VI. STATIONARY RANDOMIZED MODULATION SCHEMES

Stationary randomized modulation schemes are character-
ized by invariant deterministic and probabilistic structure,
namely:

* The nominal or reference on-off pattern that is being
dithered does not change from one switching cycle to
the next—there are no variations in the requirements on
average quantities such as the duty ratio;

* At each new cycle, the same probabilistic structure is
used—the dithering (in time) is based on independent
trials.

Stationary switching schemes can be further classified, and
the most important classes are randomized pulse position mod-
ulation (PPM), randomized pulse width modulation (PWM),
and asynchronous schemes [45], [43].

Referring to Fig. 2(a), § is the time at which the k-th cycle
starts, T} is the duration of the &th cycle, ay, is the duration of

the on-state within this cycle, and ¢y is the delay to the turn—
on within the cycle. Note that the duty ratio is dr = ax/Tk.
The switching function ¢(¢) that we analyze consists of a
concatenation of such switching cycles.

In general, one can dither ey, di, or Tk, individually or
simultaneously. Some combinations used in power electronics
are

» randomized pulse position modulation (PPM): g

changes; Tk, ay fixed;

¢ randomized pulse width modulation (PWM): a;, changes;

Er = 0; Tk ﬁxed;

» simplified asynchronous modulation [43]: T} changes; a

fixed;

¢ asynchronous modulation [45]: T} changes; ex = 0; dj

fixed.

The tools for analysis of the first three cases have been
available from the communication theory literature of the
1960s [29], [22]. This literature seems to have been largely
overlooked by the power electronics community. Results for
all four categories are presented here.

A. A General Formula for Stationary Randomized Modulation

With (¢ — &) denoting the single-pulse waveform defined
in Fig. 2(b), we can write the switching function as

o0

> ui(t— &) ®)

k=-—o00

q(t) =

Let U(f) denote the Fourier transform of wug(t). The power
spectrum of ¢(¢) can now be computed using the procedure
described in detail in [39] and based on [29]. This procedure
in effect computes the autocorrelation and takes its Fourier
transform, exactly as required by the definition of power
spectrum. Alternatively, one could derive the power-spectrum
using the Wiener-Khintchine relation (7). The result is

E[Us(f)UR(f)e??™ &%) (9)

where T is E[Ty], the expected duration of a cycle.

The result (9), in which Ug(f) is a function of &4, ag,
di, Tr and possibly other randomization parameters, is very
general. The specialization of this formula to various stationary
randomized modulation schemes of interest in power elec-
tronics is considered in the following subsections. A case of
great practical interest is where the randomized modulation
in different cycles is based on statistically independent trials
and where all cycles are of duration T, but the duration
ap, and/or position € of the pulse are randomized. In this
case the expectation in formula (9) factors into a product of
expectations, and we add and subtract the term | E[U(f)] |2
/T that corresponds to k = 0. After invoking the Poisson
identity [29]

i QI2TkfT _ %

k=—o0

oo

> 65

k=—o0
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Fig. 4. Discrete spectrum: Comparison of conventional and randomized
PPM modulation, period T' = 1, duty ratio D = 0.5.

the power spectrum is shown to equal

8.(f) == {E[ U(f) P~ | EU(f)] P
T
1 > k
+ I BUGIE Y 87— )

k=—o0

10)

where we have dropped the now unnecessary subscript on

Ur(f)-

B. Randomized Pulse Position Modulation

In this section the case of randomized pulse position mod-
ulation (PPM) is considered, where each cycle has the same
length T, and the pulse in each cycle has the same duration
a, but now we allow an independent random variation in the
position € of the pulse in the k-th cycle, see Fig. 3. Let the
probability density function for ¢ be p.(¢) and let the Fourier
transform (or characteristic function) of this be denoted by
P.(f). We also introduce the notation U(f) for the Fourier
transform of a rectangular pulse of width a that starts at 0, so

that U(f) = U(f)e™9>"/. Then E[| U(f) |?] =| U() |? and
EU(f)] = U(f)P(f), so (10) becomes
s =2  min )

2 o0
D D ()

k=—o00

This expression is found, for example, in [29].

(11)
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Fig. 5. Continuous spectrum: Randomized PPM, period T' = 1, duty ratio
D = 0.5.

As an example, assume 1" = 1. Then for rectangular pulses
of width D

sin(w fD) .,
Su(f) = (— =)’
{A= 1PN P+ BN P D] 8-k} (12

k=—o00
The nondithered case is easily recovered. For ¢; = 0, pe(t) =
6(t), and P.(f) = 1, so

oo

s, = (2TD) ”fD )y S 6 k)

k=—o00

(13)

as expected for a periodic train of rectangular pulses.

Since p.(t) is a probability density function, it must inte-
grate to 1, so P.(0) = 1. Given that | P.(f) |< 1 [33], and
that from Parseval’s equality

JIREZGI

it follows that | P.(f) |< 1 in some frequency range. The
expression (12) shows that in this frequency range the discrete
part of the spectrum will be decreased, when compared to
the conventional switching strategy. The price paid for this
result is the introduction of the continuous part of the spectrum
(the ““fill-in”), (sin(wfD)/wf)2(1— | P.(f) |?). This might
be quite acceptable, given the predominantly narrow-band
form of the standards described in Section III, and this is
the rationale behind a growing number of applications of
randomized modulation.

For illustration, specialize to D = 0.5 and ¢; uniformly
distributed in the interval [0, (1 — D)T], or [0,0.5] . For these
values, the discrete, nondithered spectrum is shown in Fig. 4
together with the discrete spectrum for randomized PPM, and
the continuous spectrum is shown in Fig. 5.

(14)
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Fig. 6. Randomized PPM: Estimated and calculated spectrum, with
M = 4096 points.

We now describe the application of Welch’s method (which
is implemented in the signal processing toolbox of the Matlab
package) to numerically verify (12) via Monte Carlo simu-
lations, following Section V. The parameter values for the
simulation are D = 0.5 and T" = 1, as in the previous example.
In each cycle, a random number uniformly distributed between
0 and 0.5 is chosen as the offset for the pulse, and the
waveform for that pulse is thereby completely defined. A total
of 256 cycles is generated, with 64 samples in each cycle.
The total number of points is thus N = 16,384 and the
width of an individual data segment M can be varied. The
approximate frequency resolution of Welch’s method, defined
as the minimum distance of two distinguishable sinusoids, is
approximately 41/M in this case [36].

In Figs. 6 and 7 the estimated power spectrum (dotted)
is shown together with the calculated continuous spectrum
from (12). Welch’s procedure generates the estimate of the
total power spectrum, i.e., of the sum of continuous and
discrete spectra, so the large deviations between the estimated
and calculated continuous spectrum near the peaks are due
to discrete spectral components. This remark holds for all
examples presented in this paper. The general agreement with
the calculated continuous spectrum is good.

In Fig. 7 the first two harmonics are magnified. These
figures show a ‘‘jittery’’ estimate, as expected for the large
M(= N/4) that we have used. To estimate the coefficient
associated with the impulse at the unit frequency, we can
proceed as follows. From the known width of the frequency
segment, 1/64 for this particular value of M, a value of 0.0296
is obtained for the area of the peak centered at f = 1, and
0.0083 and 0.0084 for the neighboring segments (of width
1/64 each) to the left and right, respectively. The calculated
value for the discrete component at f = 1 is 0.0411, and
the integrals of the calculated continuous spectral component
over segments of width 1/64 to the left and to the right are
only 0.0009. The discrepancy in total signal power over all
three segments between the estimated and calculated spectra is

Randomized PPM, 16,384 pts, M=4096, Overlap=2048

o

Power spectrum, 10log( )
IS
=4

s

Fig. 7. Randomized PPM: Estimated and calculated spectrum, first two
harmonics, corresponding to M = 4096 points.

approximately 5%. The reason for looking at the contributions
of three segments rather than one is the spectral ‘‘leak’’
inevitable due to windowing in the time domain [36]. In
this particular case the frequency resolution (defined as the
minimum frequency difference between the two sinusoids that
permits them to be resolved) is approximately 0.01 [36], while
the width of a frequency segment is 1/64 = 0.015. Thus,
when estimating coefficients associated with impulses it is
necessary to take into account the spectral leak by integrating
the signal power over a sufficiently wide frequency segment,
and subtracting the contribution of the continuous spectrum.

C. Randomized Pulse Width Modulation

In randomized pulse width modulation (PWM), the on-state
duration a;, is varied within a fixed period T'. Consider the case
where T = 1 and a4, lies in the interval [0, 1], with a uniform
probability density. With o = 7 f, the spectrum is given by

Sulf) =75l -

sina + (o —sinacosa)? —
+ — > 6(f - k)

sin «
o2

k=—o00

15)

This result is presented in [29] with an unfortunate typo-
graphical error (the term o? is missing in the last fraction).
Conventional switching yields the discrete spectrum given in
Fig. 8; the figure also shows the discrete spectrum for ran-
domized PWM. Randomized PWM yields discrete harmonics
at even multiples of the switching frequency as well (for
D = 0.5 conventional modulation has only odd harmonics). In
this example, randomized PWM reduces the fundamental more
than randomized PPM does (see Fig. 4), but randomized PPM
is more efficient at reducing the higher discrete harmonics.
The continuous spectrum for randomized PWM is given in
Fig. 9, which can be contrasted with the result for randomized
PPM in Fig. 5.
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Fig. 8. Discrete spectrum: Comparison of conventional and randomized
PWM modulation, period T = 1, duty ratio D = 0.5, pulse width uniformly

distributed in the interval [0, T7.
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Fig. 9. Continuous spectrum: Randomized PWM, period T' = 1, duty ratio
D = 0.5, pulse width uniformly distributed in the interval [0, 7).

Another case of interest is the example of equally probable
pulses of lengths 0.25 and 0.75. In this case application of (10)
goes as follows. The Fourier transform of a single unit pulse
of duration ay equals U(f) = (1 — e=927a) /(j27r f). After
taking into account that ay can take only two values, namely
0.25 and 0.75, we obtain

1 T
E[U(f) 1] = WD -~ m(%) - cos(%)] (16)
and
11— eJ2rf0.25 | _ ,—j2mf0.75
E[U(N] =5l Gonf “on] . an

Random choice .25 or .75, PWM, discrete spectrum
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Fig. 10. Randomized PWM: Calculated discrete and continuous spectrum,
period T = 1, equally probable pulses of duration 0.25 and 0.75.

Fig. 11. Randomized PWM: Measured power spectrum, equally probable
pulses of durations 0.25 and 0.75.

0.1 Ohm

1 mH 0.12 Ohm

YyYvYYy

Fig. 12. Buck converter used in verification of power spectral formulas for
stationary modulation.

Then the formula (10) yields the power spectrum shown in
Fig. 10. These theoretical results can be compared with the
experimental results for a buck converter shown in Fig. 11.
Good agreement can be observed.

We have used the buck converter circuit shown in Fig. 12 to
obtain experimental verification of some of our formulas for
power spectra under randomized modulation. The fundamental
switching frequency in this circuit is 10 kHz. The transistor in
our implementation is controlled by a microprocessor, which
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Fig. 13. Block diagram of the experimental setup for verification of power
spectral formulas in randomized modulation.

Randomized Asynchronous Modulation

[v] 05 1 15 2 25 3 35 4
Frequency, in harmonics

Fig. 14. Calculated and estimated power spectra for g(t) in asynchronous
modulation.

is in turn connected to a personal computer. The main role
of the personal computer is to facilitate development of the
microcode for randomized switching. A block diagram of the
experimental system is shown in Fig. 13. Note, however, that
practical randomized modulation schemes can be implemented
with much simpler hardware, for example with a pseudo-
random number generator and auxiliary circuitry.

D. Randomized Aperiodic Modulation

In this section we consider the asynchronous dc/dc ran-
domized modulation scheme introduced (but without power
spectral formulas) in [45]. In this scheme, the lengths of
successive cycles T are randomized, while the duty ratio is
kept fixed at its nominal value. The scheme is different from
the simplified asynchronous version used by the same authors
later [43], in which T} is again random, but the duration of
the on-state is constant. This latter simplified scheme has been
analyzed in [29] and [22], building on a formula for the power
spectrum of a dithered impulse train. The original scheme in
[45], where the duty ratio is fixed, is harder to analyze, as two
correlated dithered impulse trains have to be used; this is the
case we treat here.

At this point in our development we can either specialize the
formula (9) to the case of aperiodic randomized modulation, or
build on the formula presented in [22] for the power spectrum
of a dithered impulse train. It has been shown in [39] that both
approaches lead to the same resuits. If we denote by Pr(f)

\ 4 L

Vin Vout

(@]
=
AAAAA
yvy
'

Fig. 15. Standard configuration of a buck dc/dc converter.

the Fourier transform of the probability density function used
to determine successive cycle lengths T}, then our derivation
[39] shows that the power spectrum of the asynchronous pulse
train is

2 P
Swhﬁﬁwmﬁfgﬁ
Pq%(’%) PT(%)
+ Re(m) - 2Re(——1 —Pr(f) ). (18)

(Note that Pr(f) # 1 for f > 0, unless T is governed by a
very special ‘‘lattice’” probability density function; this case
is addressed in [39]).

In Fig. 14 we show the calculated spectrum (dotted line)
computed using (18), and the estimated spectrum obtained via
Monte Carlo simulations and Welch’s estimation method, see
Section V. The agreement is evidently very good.

VII. CURRENT SPECTRA

Our results so far allow us to directly determine the power
spectra of certain other waveforms in power converters from
the spectrum of the switching function g¢(¢). A simple anal-
ysis of the standard buck converter [15] shown in Fig. 15
establishes that the inductor current equals the integral of

L

where V;,, is the input voltage, V,,; is the output voltage, and
g(t) is the switching function. The average (dc) component
of the inductor current is controlled by a separate (outer loop)
controller. This allows us to apply (4) to determining the power
spectrum of the inductor current at positive frequencies:

Sulf) = S 55 5u(1). 19)
For that case calculated and measured spectra are given in
Figs. 16 and 17, and good agreement is evident.

Similar relations between the switching function and the in-
ductor current can be observed for other basic dc/dc converters
in the continuous conduction mode. In the case of a standard
boost converter [15], the inductor current (which happens to
be the input current) is the integral of

V; - ‘/out + q(t)v;ut
L

In the case of an buck/boost converter, the inductor current
is the integral of

q(t)(‘/zn + Vout) - V:)ut
L .
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Calculated inductor current discrete spectrum, .25 or .75, PWM
0.03 T T T T T T T T T

0.0251

o
S

0.015 -
0.01f--

Power spectrum

.

1] 05 1 15 2 25 3 35 4 45 5
Frequency, harmonics
Calculated inductor current continuous spectrum, .25 or .75, PWM
T

T T T T T T T T

o
)
T

Power spectrum

o2k ... e b e L, o s s IR v

[} 05 1 15 2 25 3 35 4 45 5
Frequency, harmonics

Fig. 16. Calculated spectrum of the inductor current for a buck converter in
continuous conduction mode with randomized PWM.

Fig. 17. Measured spectrum of the inductor current for a buck converter in
continuous conduction mode with randomized PWM.

Analogous relationships could be derived for output voltages
Vout.

Computation of the power spectrum of the input current
in buck and buck/boost converters is more intricate. In the
remainder of this section, we show how (10) can be used
to determine the spectrum of the input current for these
converters.

Fig. 18 applies to a buck converter operating in continuous
conduction mode, and shows a typical nominal switching
function, together with the nominal inductor current and
the input current. The input current at the kth cycle under
randomized PPM is shown in Fig. 19. Note that the inductor
current at the beginning of each dithered cycle is still at its
nominal value Iy. The input current at the kth cycle depends
only on €k, and we can specialize (10) to that case. U (f) is
the Fourier transform of the input current waveform, a single

9 [ Cycle
1
time
Period
i Inductor Current

AVAVAVAN

time

NAA0717.

Fig. 18. Nominal switching function, inductor current, and input current for
a buck converter in continuous conduction mode.

T

Fig. 19. Input current for a buck converter in continuous conduction mode
with randomized PPM.

cycle of which is shown in Fig. 19. After writing equations
for the straight line segments shown in Fig. 19, U(f) turns

out to be (for f > 0):
V:,utE Sln(ﬂ'fDT) —jmfDT
U(f) ={(To - ) e "
L nf
V; —Voute_]-ﬂfDT[sin(WfDT)
j2nfL nf
_ DTe_j"fDT]}e_j27rf€.

(20)

Equation (10) can then be evaluated, once probability den-
sities for € are specified. As an example, we consider the case
of randomized pulse position modulation where the delay ¢
is either 0, or T'/2, each with probability 1/2. For this case
calculated and simulated spectra are given in Fig. 20 (there
are no discrete spectral components in this example).
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It turns out that the power spectrum of the input current in
buck and buck/boost converters is harder to calculate for some
other randomized modulation schemes, notably for randomized
PWM.

VIII. RANDOMIZED MODULATION FOR INVERTERS

In this section, the nominal on—off pattern is assumed to
change from one switching cycle to the next, but repeats
periodically over a block of cycles, as would be required for
inverter operation. The randomization then involves dithering
this pattern in each cycle using a set of mutually independent
trials with a statistical structure that remains constant from
block to block, hence the label of block-stationary randomized
modulation. Most of the results presented here are either novel,
or represent generalizations of previously available results.
Their derivation follows the one outlined in Section VI-A,
but requires additional algebraic manipulations. We restrict
ourselves to single-phase schemes. Power spectra for line-to-
line or line-to-neutral variables in a three-phase system can be
found easily, once the spectrum corresponding to one phase
is known.

Two modulation schemes of particular interest in practice
are block-stationary PPM and block-stationary aperiodic mod-
ulation. In this section we consider block-stationary PPM,
and refer the interested reader to [39] for details on block-
stationary aperiodic modulation.

Consider the case of IV cycles in a block (see Fig. 1 (b)),
with possibly different cycle lengths T}, and possibly different
probability densities (with characteristic functions Pj). Let
Uk(f) denote the Fourier transform of the pulse u(t) in the
k-th cycle of the block (defined with respect to a time origin
at the start of the corresponding cycle), and iet

Ui(f)
U2(f)e—]27rfT1

Uf) = |,
Un(f)e™2 B!
and
U Pe-soerm
(s = |.

U (f)Pr(fle2 Tisi T

Let 1 denote an N x 1 vector of ones, and let ziv T, = T,
Then the power spectrum of the resulting waveform can be
shown to equal

1 . A > k
Su(0) = FUUIP = 101) + 2170071 3 67 - 2)
k=—o00
@21

where ||U||? is the sum of magnitudes squared of the elements
of vector U, and U¥ is the complex conjugate transpose
(Hermitian) of U. Note the similarity to (11). A special case
of (21) governs the setup considered in [16].

We now present experimental verification for the previous
formula, with an experimental circuit comprising a single

Input Current Sp Buck C . Randomized PPM
18, T T T T T T T
o ) 1
1"
" Key:
141 1"y y: E
A
12 ___Calculated -
\
- - Estimated

———=
1

o
A./\'\. S S

cO 1 2 3 4 S 6 7 8
Frequency, in harmonics
Fig. 20. Calculated and simulated spectrum of the input current for a buck

converter in continuous conduction mode with randomized PPM.

Deterministic Modulation, Inverter Example
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Fig. 21. Calculated power spectrum in deterministic modulation example.

phase of a three—phase inverter. The average switching fre-
quency was kept at 250 Hz, as the experiments were aimed at
verifying our analytical results. Consider the case N = 2,
with uniform dither between 0 and % = 0.25. The basic
pulses have Dy = 0.25 and D, = 0.75. The reference case
of deterministic switching with alternate duty ratios D; and
D, is shown in Fig. 21. The calculated spectrum for this
randomized PPM is given in Fig. 22. The results shown in
Fig. 22 are in close agreement with the experimental results
for the same case, which are shown in Fig. 23. In this example
the discrepancies between theoretical and experimental results
for discrete harmonics are under 5%.

IX. SYNTHESIS PROBLEMS

In this section the goal is to explore how effective random-
ized modulation is in achieving various performance specifica-
tions in the frequency domain. Desirable properties of power
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Calculated spectrum for block-stationary randomized modulation

spectra are dependent on the particular application. Require-
ments of particular interest in practice are the following:

» Minimization of one or multiple, possibly weighted, dis-
crete harmonics. This criterion corresponds to cases where
narrow-band characteristics of discrete harmonics are
particularly harmful, as for example in acoustic noise,
or in narrow-band interference.

e Minimization of signal power (integral of the power
spectrum) in a frequency segment that is of the order
of an integral multiple of the switching frequency. This
criterion corresponds to wide-band constraints in mili-
tary specifications, and it could be of interest for EMI
interference problems.

All the optimization problems in this section are presented
for the case of randomized PPM. Formulations for other
modulation schemes are analogous, and could be specified
using the analytic expressions derived in [39]. To streamline
the notation, it is assumed that the period of the reference
(deterministic) switching waveform is unity, 7' = 1. In this
case the power spectrum for randomized PPM is given by
(11):

S(f)=WEH{- PP+ PSP D 6(F—k)}

k=—00
(22)
where the non-negative function W{ f) represents the square of
the Fourier transform of a rectangular pulse of unit height and
width D centered at 0. Note that the kth discrete harmonic
has intensity | P(k) |2.
A typical narrow-band optimization criterion, which corre-
sponds to the minimization of the sum of discrete harmonics
between the [-th and L-th, can now be written as

L
NP = W(k) | Pk) |?

k=l

(23)

where a weighting function could be absorbed in W(f).

M

Yi 4,558 aviE

Fig. 23. Measured power spectrum in block-stationary randomized modula-
tion example.

The wide-band optimization criterion used for illustration
in this section corresponds to the minimization of the signal
power for randomized PPM in the frequency segment [0 1.5],
where the switching frequency is 1. This criterion can be
written as

JVEB = /0_ W(F)(1—| P(f) P)df+W(1) | P(1) |>. (24)

Both the narrow-band criterion JVZ and the wide-band
criterion JWB are in general nonlinear in P(f); in the PPM
case, they are quadratic functions of P(f).

The optimization process, which is performed in the fre-
quency domain, has to generate a function that satisfies con-
straints in the time domain. In the case of stationary modu-
lation schemes, the optimization is performed over the space
of candidate probability densities P. In all cases of practical
interest these densities have finite support (extent). Not surpris-
ingly, the performance achievable by randomized modulation
depends on the extent of the imposed dither (i.e. the width of
the support of the dither probability density), which is in turn
limited by the duty ratio of the nominal switching waveforms.
In the case of PPM, the dither is constrained to lie in the range
[0, 1— D], where D is the nominal (undithered) duty ratio.

If global optimality of solutions to optimization problems
in randomized modulation is needed, then a complete
parametrization of the domain P in the frequency domain
is required. None of the results from Fourier theory known
to us establishes a complete parametrization of the set
of P(f), even in the absence of constraints in the time
domain. Thus, for our optimization purposes, we make
do with partial parametrizations of the domain P. Several
simple parametrizations of P were used in our numerical
procedures, and together they enable optimization over many
probability distributions of interest in implementations. The
parametrizations used in the optimization problems here are
defined in the time domain as

N
p(t) =Y cupi(t) (25)
=1
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TABLE 1
NARROW-BAND OPTMIzATION JYB: CRIT. (x10%)
Modulation D=0.1 | D=0.5 | D=0.9
Undithered 450.0 | 1250.0 | 450.0
Point Masses 71.8 0.0 197.0
Hanning 3.3 153.0 232.0
Rectangles 3.5 208.0  242.0
Uniform 3.5 417.0 | 283.0
Uniform Pt. Masses | 255.0 | 211.0 | 240.0

where the p; are known probability densities (‘‘basis func-
tions’’) with appropriate finite support, and the o; are coeffi-
cients to be determined in the optimization. The coefficients
satisfy Z,]il oy = 1, and oy > 0. It turns out that optimal
probability densities obtained with different basis functions
are very similar, and that they yield very similar performance
in terms of the criterion values. This gives some assurance that
the choice of basis functions is not critical for the optimization.

The basis functions used to parametrize the domain of
candidate probability densities in this paper are

* rectangles, dividing the available probability density sup-
port ([0, 1 — D] in the PPM case) into N segments of
equal width;

» Hanning windows (‘‘raised cosine’’ functions), with p;
and py being ‘‘half-windows’’.

* discrete probability densities of IV point masses summing
to 1, at fixed or variable locations;

* [-densities, given (on the segment [0, 1 — D] ) by the
expression

p(t) = .

B(a,b)

where B(a,b) is the normalizing constant

ta—l (1 _ t)b—l

1-D
B(a,b) = / t2-1(1 - £)dt.
0

A [3-density depends on only two parameters, and it
can approximate probability densities having a single
maximum or minimum.

Other probability densities used for comparison are the
uniform density, and a density comprising N equally spaced
probability masses with coefficients %

Optimization of the narrow-band criterion J{V5 = JNB
is considered first, with N = 4 basis functions in each
parametrization. The criterion values at the numerically com-
puted optimum are given in Table I. These optimization
results are in agreement with the intuition that in cases when
there is a large ‘‘dithering length’’ available (i.e., when the
nominal duty ratio D is small), then a large reduction in
the size of harmonics should be achievable. Though none of

our parametrizations for probability densities ends up being

TABLE II
WE-BAND OpriMizaTioN JYY B, D = 0.5: CRIT. (x10%)

Modulation | Criterion Coefficients
Undithered 1013

Point Masses 965 0.5 at 0.16 and 0.34
Hanning 973 | [0.33, 0.17, 0.17, 0.33]
Rectangles 973 | [0.35, 0.15, 0.15, 0.35]
B—density 975 a=5b=0.76

Probability Denaity
o O

0 0.05 0.1 0.15 02 025 03 0.35 04 045 0.5
Time

Fig. 24. Optimal probability densities in the wide-band optimization exam-
ple.

superior for all cases, the optimal solutions for different
parametrizations are in fact similar. For example, for D = 0.5,
the optimal rectangle coefficients are [0.5, 0, 0, 0.5], while
the optimal peak height ratios for the Hanning basis functions
are [0.5, 0, 0, 0.5] in general.

In the case of the duty ratio D = 0.5, with equal point
masses at 0 and 0.5, the orthogonality of W(f) and | P(f) |
yields O as the value of the criterion. This modulation scheme
is sometimes referred to as dual modulation. Such extreme
effectiveness in the reduction of discrete harmonics is not
always a characteristic of randomized modulation, but it
might account for some dramatic improvements reported in
implementations.

The criterion JIW B is considered next, and results obtained
for randomized PPM are given in Table II. The results suggest
a limited effectiveness in reducing the total signal power in a
wide frequency band (relative peak heights are given in the
third column for the Hanning basis). Fig. 24 plots the optimal
densities corresponding to the cases in Table II.

These examples suggest that randomized modulation is
in general very effective in reducing the size of discrete
components, thus providing a quantitative basis for wide-
spread applications of randomized modulation to acoustic
noise reduction. As pointed out earlier, the recent draft of
new military specifications [30] introduces a single frequency
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window for all spectral measurements. For example, the width
of that window is 10 kHz for measurements in the range
250 kHz-30 MHz, thus favoring randomized modulation for
switching frequencies 105-10° Hz.

On the other hand, randomized modulation is much less
effective in addressing wide-band spectral requirements. Spec-
tral changes introduced by randomized modulation are mostly
localized in frequency.

X. CONCLUSIONS

The main motivation for the use of randomized modulation
so far has been the possibility of acoustic noise reduction in
inverter-based motor drives. It is argued in this paper that ran-
domized modulation could be beneficial for operation of any
power converter. The main benefit from randomized switching
strategies in this context is better utilization of the allowable
harmonic content of waveforms at the equipment/utility inter-
face. Randomized modulation is not merely a way to take
advantage of present regulations, which have been written
for a deterministic switching discipline, but also a flexible
approach to solving problems caused by electromagnetic or
acoustic noise. To that end, the analytical results presented here
might serve as an aid to assessment of the potential benefits
of randomized modulation, and as a basis for design.

We have presented results for the power spectra of the
switching functions for various stationary randomized modu-
lation schemes, and have analyzed input currents as examples
of waveforms that are not related to the switching function
through a linear relationship. Synthesis problems in random-
ized modulation were considered in the last section of the
paper, where both optimization criteria and numerical results
are described. It is shown that randomized modulation can be
very efficient in reducing the size of discrete harmonics and in
satisfying narrow-band constraints, but is much less effective
in dealing with wide—band requirements.

Results on stationary modulation can be generalized addi-
tional cases, described in detail in [39]. If one randomized
modulation scheme, say randomized PPM, is applied to an
already aperiodically modulated pulse train, the procedure
is denoted as cascaded randomized modulation. In alternate
modulation two different randomized modulation schemes are
applied in alternation. In random choice of randomized modu-
lation, at each cycle a random choice between two modulation
schemes is made, and independent random experiments are
performed afterwards to get values for the associated random
parameters. These results are described in [39].

Switching based on a Markov chain possesses additional
generality when compared to the randomized switching strate-
gies described in this paper. The switching pattern in each
cycle is made dependent on the state of the underlying Markov
chain, thus providing an additional degree of flexibility. State
transition probabilities can be chosen so that large local
deviations from desired average steady-state behavior are dis-
couraged or prevented altogether. This permits simultaneous
control of spectral characteristics and time-domain ripple,
for instance. Results on randomized modulation governed by
Markov chains are presented in [39] and [42].

Modern motor drive systems require tailored PWM
schemes. Deterministic PWM optimization, often labeled
“programmed switching,” is very successful in meeting the
wide-band spectral requirements, while it has deficiencies
in dealing with narrow-band spectral constraints. This
paper shows that randomized modulation could play a
complementary role.
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