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Time-Varying Effects and Averaging Issues
in Models for Current-Mode Control
David J. Perreault,Student, IEEE,and George C. Verghese,Senior Member, IEEE

Abstract—This paper investigates issues in modeling of current-
mode control. The effects of the current-sampling intrinsic to
current-mode control are analyzed, and inadequately recognized
limitations of linear time-invariant (LTI) models at high frequen-
cies (where the system behavior is time-varying) are exposed. The
paper also examines the geometric methods used to derive duty-
ratio constraints in averaged models of current-mode control and
points out the sources of discrepancies among various models.
The conclusions are supported by simulation and experimental
results.

Index Terms—Current-mode control, state-space averaging.

I. INTRODUCTION

M ODELING of current-mode-controlled converters has
been a topic of interest to the power electronics com-

munity for well over a decade. Recently, much effort has
been focused on extending the traditional averaged models to
capture high-frequency behavior [1]–[4]. Other research has
been aimed at improving modeling accuracy by eliminating
subtle flaws in the derivation of duty-ratio constraints for
current-mode control [5], [6]. This paper (which appeared in
a preliminary form as [7]) investigates these recent modeling
approaches and, in the process, exposes some serious limita-
tions that have not been adequately accounted for previously.
Section II of this paper investigates the impact of sampled data
effects on small-signal modeling of current-mode-controlled
converters. Section III examines the geometric methods used
to derive duty-ratio constraints used for averaged models of
current-mode control. The appendix outlines the approach used
in our simulations.

Throughout this paper, comparisons between models are
made using the boost converter example from [2], shown in
Fig. 1. Under normal operating conditions, the switch is turned
on every s and is turned off when the inductor current
reaches a peak value of minus a compensating ramp.

II. SAMPLED DATA EFFECTS

Efforts to extend small-signal linear time-invariant (LTI)
models of current-mode-controlled converters to high frequen-
cies have been motivated by the desire to improve control
design, while retaining simplicity. Typically, low-frequency
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Fig. 1. Example boost converter.

Fig. 2. The approximate sample-and-hold relationship between perturbations
in control and peturbations in (instantaneous and average) inductor current.

averaged models are used for feedback control design, while a
separate high-frequency model is used for slope compensation
of the well-known ripple instability. This is done because
low-frequency averaged models cannot predict the ripple in-
stability, even under open-loop conditions. On the other hand,
models used for predicting subharmonic oscillation do not
always capture the behavior of converters operating under
closed-loop voltage control. Thus, many researchers have
sought to develop LTI transfer functions that fully capture the
small-signal behavior of current-mode-controlled converters
[1]–[4], [8]. Unfortunately, these works have not sufficiently
addressed the limitations imposed by the current sampling
intrinsic to current-mode control, leading to results that are
subject to misinterpretation.

This section of the paper investigates the effects of current
sampling and assesses their impact on control design. As
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Fig. 3. System for modeling the relation between perturbations in control and perturbations in current. This model relies on the assumptions used
in forming H(z).

described in [1] and illustrated in Fig. 2, an approximate
sample-and-hold relation exists between a perturbation
in the control signal and the resulting perturbation

in inductor current for a current-mode-controlled
converter. The corresponding perturbation in the one-cycle
average inductor current is also , to first order.
These facts form the basis for the derivations in [1]–[3] of
high-frequency extensions to low-frequency models. A similar
approach, expressed in terms of duty-ratio perturbations, is
used in [4]. A more exact numerical approach to generating
a transfer function is described in [8], but the limitations
imposed by current sampling apply equally there as well. What
is not made clear in all these works is that, because of the
sampling and reconstruction, the system becomes significantly
time varying(in fact, periodically varying) to perturbations in

that approach half the switching frequency. This leads to
the injection of additional frequencies in and thereby
causes significant deviations from the results suggested by
existing treatments.

A. Modeling Approach

Consider the effect of a perturbation in the control sig-
nal of a current-mode-controlled converter. With the
assumption that the input and output voltages do not vary
significantly, the relation between the perturbation in control
and the resulting current perturbation can be approximated
by a sample-and-hold system (Fig. 2). That is, the exact
current perturbation (which is the difference between the
transient and steady-state currents) is well-approximated by the
zero-order hold (ZOH) of its samples , taken at the turn-
off instants. As discussed in [1], the main effects not modeled
by the sample-and-hold approximation are the variation in
sampling time and the finite slope of the current perturbation
transition. The samples of the instantaneous current
perturbation can also be seen as approximate samples of the
average current perturbation over the ensuing interval of length

. Discrete-time relations can now be formed between the
samples of the control perturbation and samples
of the average inductor-current perturbation, as described in
[1]. In the small-signal limit, the LTI model of [1]–[3] results,
with the -transform transfer function given by

(1)

where , , and are the slope magnitudes of the
rising inductor current, falling inductor current, and slope-
compensation ramp, respectively, in the nominal steady state.

(To keep notation streamlined, we employ the same symbol
for time-domain and transform-domain quantities, but use the
arguments and to denote the and Laplace transforms,
respectively.) Under the preceding assumptions, the relation
between perturbations in control and perturbations in the
average inductor current can then be modeled, as shown in
Fig. 3. The impulse modulation represents the sampling action,
while the ZOH at the output reconstructs the continuous-time
waveform. We use c/d to denote the conversion of an impulse
train to a sequence of samples and d/c to denote the inverse
operation.

This model has been adopted in [1]–[3] since it predicts
how an initial current perturbation will decay and can predict
open-loop subharmonic oscillations due to ripple instability,
whereas a conventional averaged model cannot. The papers
[1]–[3] then attempt to incorporate the sample-and-hold effect
into continuous-time LTI models by finding a continuous-time
transfer function for the system of Fig. 3. What is ignored
in these works is thatthe system in Fig. 3 is time-varying for
control perturbations approaching half the switching frequency
and cannot be described by a transfer function at these fre-
quencies. That is, the response of the system in Fig. 3 (and
the response of current-mode-controlled converters) at these
frequencies depends on the position of the control signal,
with respect to the sampling points. To see this, note that the
sampling process, which is modeled by impulse modulation,
generates replicas of the input-frequency spectrum centered
at multiples of the sampling (or switching) frequency,

:

(2)

The effects of the replicas are explicitly ignored in [1]–[3],
which make the approximation

(3)

to generate a control-to-current transfer function for the system
of Fig. 3. (Replica components are also ignored in [4] and [8],
although the model derivations are somewhat different.) For
low-frequency perturbations, this approximation is justified,
since the frequencies generated by the replicas will be well-
filtered by the low-pass ZOH reconstruction filter in Fig. 3.
However, as can be inferred from the frequency response of the
ZOH reconstructor (Fig. 4), the responses due to the replicas
will not be well-filtered for higher frequency perturbations.
This generates frequency components in the output that were
not in the input [9].
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Fig. 4. The frequency response of the ZOH reconstruction filter.

Fig. 5. Small-signal inductor-current response to sinusoidal control pertur-
bations at various frequencies for the converter of Fig. 1 (Ip = 4:89 and
Mc = 0). Response becomes nonsinusoidal abovefsw=10.

B. Simulation Results

To illustrate the preceding point, the converter of Fig. 1 was
simulated for the nominal operating condition corresponding
to at A and , both with and without
a small sinusoidal control perturbation at a given frequency.
The difference between the inductor currents in the two cases
is the small-signal response to the perturbation. As can be
seen from the plots in Fig. 5, the response begins to deviate
significantly from a sinusoid when the perturbation frequency
is within a decade of the switching frequency. Furthermore,
differently phased perturbations yield very different results.
The frequency components due to the replicas are clearly
visible in the waveforms. Similar effects occur in the output-
voltage waveforms.

Fig. 6. Small-signal inductor-current response to a control perturbation of
amplitude 0.001Ip at fsw=2 in the boost converter of Fig. 1 (D = 0:4 @
Ip = 4:89 A and Mc = 0). The response is normalized to the amplitude
of the perturbation.

Fig. 7. Small-signal inductor-current response to a control perturbation of
amplitude 0.001Ip at 0.95fsw=2 in the boost converter of Fig. 1 (D = 0:04
@ Ip = 4:89 A andMc = 0). The response is normalized to the amplitude
of the perturbation.

What [1]–[4] and [8] have set out to capture is the fun-
damental component of the response to a sinusoidal pertur-
bation, in effect computing a describing function. This is
why predictions in those papers generally agree with narrow-
band measurements made using network analyzers. However,
models incorporating their approaches are not necessarily
reliable for assessing closed-loop stability using LTI design
methods. For example, consider the simulated response to
a sinusoidal control perturbation at exactly half the switch-
ing frequency for the converter of Fig. 1 at the operating
condition noted earlier. The amplitude of the perturbation
is approximately 0.1% of the nominal , with the
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(a) (b)

(c) (d)

Fig. 8. Inductor-current spectra for sinusoidal control peturbations (fsw � 48 kHz): (a) 12 kHz, (b) 18 kHz, (c) 23 kHz, and (d) 24 kHz (constructive phase).

describing function of [1]–[3] predicting a control-to-inductor
current gain of 3.2. However, because of the superposition
of the input signal and one of its replicas at this frequency,
the fundamental of the current response to this perturbation
(Fig. 6) is approximatelytwice as largeas predicted by the
describing function of [1]–[3]. (The magnitude of the response
plot is normalized to the perturbation magnitude.) The same
magnification occurs in the voltage response. Furthermore,
the actual small-signal waveform is far from sinusoidal! All
of this suggests that there are significant dangers to making
frequency-response stability assessments using the LTI model
if these assessments depend on LTI model characteristics at
frequencies approaching half the switching frequency. Fur-
thermore, the displayed response is for a sine perturbation,
with sampling occurring at points , but differently
phased perturbations will yield quite different results. Other
interesting effects are also missed by the describing function
approach at these frequencies. For example, a sinusoidal
perturbation at 0.475 yields output waveforms (Fig. 7),
which exhibit strong beating due to the replica at 0.525

.

C. Experimental Results

To demonstrate these effects experimentally, the boost con-
verter of Fig. 1 was constructed. The control circuit built
allows one to set a nominal operating pointand separately
inject an ac perturbation on top of it. The perturbation
signal is capacitively coupled to prevent dc-operating point
changes. Monitoring the inductor current with a wideband
spectrum analyzer allows all of the frequency components
generated by a given perturbation to be observed. Fig. 8 shows
the spectrum of the response to small-signal perturbations at
different frequencies. The observed responses closely match
those predicted by our simulations and the time-varying model
of Fig. 3. As half the switching frequency is approached, the
replica harmonic components become significant. Clearly, an
LTI model is insufficient for describing the system at these
frequencies.

What may be concluded from these results is that adding
complexity to low-frequency LTI models in an attempt to
capture high-frequency behavior may be of limited value for
control-loop design. Of course, modeling the sampling and
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TABLE I
DUTY-RATIO CONSTRAINTS USED IN VARIOUS CURRENT-MODE CONTROL MODELS FOR THEBOOST CONVERTER

reconstruction processes may be useful for stability analyses
that directly address the time-varying nature of the system.
Modeling these processes can also add accuracy to LTI models
at frequencies where time-varying effects are unimportant. For
example, as will be seen in Section III, the consequences of
sampling are apparent in transfer-function phase responses,
even below one-tenth the switching frequency. However, it
must be emphasized again that, due to the time-varying nature
of the system, as half the switching frequency is approached,
LTI model predictions are only reliable for frequencies well
below half the switching frequency.

III. EVALUATION OF AVERAGED MODEL DERIVATIONS

Large-signal continuous-time averaged models for dc–dc
converters are typically expressed in terms of the continuous
duty ratio used to control the converter. Here,
may be defined [10], [13] as the running average over the
interval – of the 0–1 switching function (see
Fig. 9). In current-mode control, the duty ratio is implicitly
determined by the circuit waveforms. As a result, an additional
duty-ratio constraint must be developed to model current-
mode-controlled converters. The duty-ratio constraint relates
the duty ratio to the control current and state variables of the
converter, and its derivation is usually based on the geometry
of the inductor-current waveform. This section of the paper
examines the geometric methods used to derive duty-ratio
constraints for averaged models of current-mode control.

It was pointed out in [5] that geometric derivations of the
duty-ratio constraint should be based on transient waveforms
and not steady-state waveforms. The large-signal duty-ratio
constraint that describes transient behavior of the system
should be perturbed to find the small-signal duty-ratio con-
straint. Steady-state relationships are substituted into the per-
turbed model as parameters onlyafter the perturbed model is
formed, [10, Section 13.5].

Fig. 9. Inductor-current waveforms for constant-frequency current-mode
control, with relationships amongq(t); d(t); dn; iL(t); and ip(t).

Consider the geometric evaluation of the duty-ratio con-
straint, which describes the (local, running) average inductor
current as a function of the continuous duty ratio and
control . The large-signal duty-ratio constraint is most
naturally evaluated over a switching window that coincides
with a switching cycle, say , so that

in the notation of Fig. 9. The resulting computation yields

(4)

where . Now, linearize this expression and substitute
in the proper waveform slopes for the boost converter, namely

(5)
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Fig. 10. Small-signal control-to-output frequency responses of various averaged models for the boost converter of Fig. 1 (D = 0:4 atIp = 4:89 andMc = 0).

where and are the input and output voltages, respec-
tively. This yields the corrected control constraint of [5] (see
Table I).

There is, however, an important restriction (not adequately
emphasized in [5]) in using (4) as the large-signal constraint.
Implicit in the derivation of (4) is the assumption that the
average computed over a switching cycle window, such as

, is representative of the average computed over
nearby windows and . This
assumption effectively limits us to low-frequency variations
of the control current.

Many small-signal models [1]–[4], [11], [12] explicitly
or implicitly evaluate and reduce the large-signal duty-ratio
constraint before the linearization process by substituting in
relations that describe thesteady-statewaveforms, such as

(6)

Furthermore, depending on how the relations are applied, the
papers arrive at different small-signal duty-ratio constraints
(Table I). In the conventional method [11], the constraint (6)
is applied to (4) before linearizing, yielding

(7)

Directly linearizing (7) and substituting in the relations (5)
yields the conventional constraint of [11] and [12]. However,
if we apply the constraint (6) again, as is done in [2] and [3],

we find for the boost converter that

(8)

Substituting this relation into (7) and linearizing yields the
different duty-ratio constraint of [2] and [3]. The papers
[1], [4] implicitly assume in their constraint computation
that, regardless of the perturbation in duty cycle due to the
rising part of the waveform, the inductor current returns to
its previous minimum value by the end of the cycle. This
constraint is imposed as a consequence of treating the inductor
current like a sawtooth modulator waveform in a duty-ratio-
controlled converter (whichdoes return to the same value
at the end of each cycle) and yields yet another duty-ratio
constraint.

As it turns out, all of the constraints in Table I lead to
essentially the same small-signal LTI model predictions at
low frequencies. We offer the following explanation. For
low-frequency waveforms, the change in the inductor-current
waveform from one cycle to the next is small and, as a result,

– is small. Thus, (6) is a reasonable approximation,
and the models all yield similar results.

To see that the low-frequency performance characteristics of
the conventional model [11], [12] and the models of [1]–[4] are
similar to models based on the corrected approach [5], consider
the plots of Figs. 10 and 11, which show the small-signal
control-to-current and control-to-output frequency responses
for the various models. To separate the issue of correct duty-
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Fig. 11. Small-signal control-to-inductor-current frequency responses of various averaged models for the boost converter of Fig. 1 (D = 0:4 at
Ip = 4:89 and Mc = 0).

ratio constraints from the issue of high-frequency modeling
addressed in Section II, the additional high-frequency exten-
sions proposed in [1]–[4] have not been incorporated. Samples
of the frequency responses determined by simulating the
system with and without a perturbation and looking at the
difference in response are also plotted. As can be seen, all of
these models yield similar results in the magnitude response
up to a decade below the switching frequency. There are some
differences in the phase responses, even below a tenth of the
switching frequency.

It is certainly legitimate to ask how an LTI model may be
refined to improve its prediction of the phase characteristic at
theselow frequencies, where the time-varying effects noted
in Section II arenot significant. For instance, as shown in
Fig. 12, simply including a phase delay of (the phase
response of the ZOH) with the model from [5] yields phase
characteristics that much more closely match those computed
via simulation (indicated by the crosses). Similarly, the high-
frequency extensions proposed in [1]–[4], which are again
aimed at capturing the effects of sampling and reconstruction,
help to better represent the phase characteristic at lower
frequencies.

IV. CONCLUSION

This paper has looked at several aspects of modeling
current-mode-controlled converters. It has been shown that

current-mode-controlled converters become significantly time-
varying as half the switching frequency is approached.
Hence, averaged LTI control models are only reliable for
frequencies well below half the switching frequency and are
not suitable for predicting subharmonic oscillations due to
ripple instabilities.

The geometric methods used to derive duty-ratio constraints
have also been examined. It has been confirmed that from a
mathematical point of view, duty-ratio constraints should be
based on transient waveforms. It is also shown thatboth the
conventional and corrected approaches are limited in accuracy
when the system deviates significantly from steady state. This
leads to similar performance of these models for frequencies
at which they can be considered useful. Issues similar to those
exposed here for current-mode control may be expected to
arise in other contexts, where refinement of averaged models
is sought.

APPENDIX

This appendix details the simulation methods used to cal-
culate the large- and small-signal behavior of current-mode-
controlled converters. Calculation of the converter’s state
trajectory is essentially composed of two tasks. First, the
trajectory within a given switch state must be calculated. This
trajectory is dependent on the converter topology. Second, the
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Fig. 12. Small-signal frequency response phases for the corrected model of
[5], with an !T=72 delay to capture the effect of the ZOH. The magnitude
responses are unaffected by the delay.

instant of transition between switch states must be found, as
specified by the current-mode control law.

Calculation of the trajectories in a given switch state is rela-
tively straightforward for an idealized converter. For the boost
converter, the state-space equations describing the system in
the transistor on state are

(A1)

Solution of this system from using transform techniques
yields

(A2)

Similarly, the state-space equations for the diode on state are

(A3)

When solved from , this yields

(A4)

where

(A5)

(State equations for other converters may be similarly derived.)
The second task that must be performed is detection of the

transition between the two switch configurations. For current-
mode control, this occurs when the inductor current rises
above the specified threshold. The detection of this transition
is accomplished numerically, using a straightforward binary
search algorithm. Once the current threshold is exceeded for
a given time step, the time step is halved until the transition
point is found to the desired resolution.

To calculate the small-signal behavior for a converter at a
given operating point, the converter is first simulated without
a perturbation (and adjusted to be in steady state for the entire
simulation). The converter is then simulated with a sinusoidal
perturbation, and the difference is calculated between the
two responses. Transfer functions may be constructed by
numerically calculating the magnitude and phase of the small-
signal response from its samples via a discrete Fourier series
computation. The large-signal transient behavior of a converter
is simply calculated by repeatedly calling the single-cycle
simulator for the desired number of cycles.
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