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Synthesis of Dissipative Nonlinear Controllers for
Series Resonant DC/DC Converters

Aleksandar M. Stankovi´c, Member, IEEE,David J. Perreault,Member, IEEE,and Kenji Sato,Member, IEEE

Abstract—This paper describes analytical advances and practi-
cal experiences in a nonlinear controller design methodology for
series resonant dc/dc converters. The control goal is to maintain
the output voltage (which is the only measured variable) in the
presence of large-load perturbations by varying the switching fre-
quency. The proposed methodology utilizes large-scale, nonlinear
switched, and generalized averaged models, and the resulting
closed-loop system is exponentially convergent under typical
operating conditions. The designer has a direct handle over the
convergence rate, and the nonlinear controller requires only the
usual output voltage measurements, while the load variations are
estimated. The control structure allows for variations in both
resistive and current loads. The dissipativity-based nonlinear
controller is implemented in affordable analog circuitry and
evaluated experimentally.

Index Terms—Dissipative control, large-signal modeling and
control, output feedback, resonant converters.

I. INTRODUCTION

T HE LITERATURE on modeling and control of res-
onant converters is voluminous, and only references

directly related to the development presented here will be
reviewed. The task of modeling of a dynamic system that is
to be controlled is often closely intertwined with the control
synthesis approach, and this is especially true in the case
of resonant dc/dc converters. Control-oriented modeling of
resonant converters was the subject of [1]–[3] (for an early
review, see [4]). The use of generalized averaging for the
purpose of modeling series resonant dc/dc converters has
been addressed in [5]–[7]. Small-signal models for series and
parallel resonant converters have been derived and verified in
[8]. A linear control law using the energy stored in the resonant
tank has been developed in [9]. A controller that traverses
an optimal trajectory in terms of the resonant tank variables
has been described in [10]. Sampled-data modeling and digital
control of a series resonant converter has been addressed in [4].
Robust controller design for series resonant dc/dc converters
has been addressed in [11] within a linear quadratic-loop
transfer recovery (LQG/LTR) methodology. The difficulty with
this type of approach is in the specifications of the weighting
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work of A. M. Stanković was supported by the National Science Foundation
under Grants ECS-9410354 and ECS-9502636 and by the ONR under Grants
N14-95-1-0723 and N14-97-1-0704. Recommended by Associate Editor, N.
Femia.
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matrices that often require design iterations. A controller based
on fuzzy logic is reported in [12]; it is based on gain scheduling
to distinguish between small- and large-load changes, and
requires a fast microcontroller. The use of physical and circuit-
theoretic properties such as dissipativity in control design
of switched-mode power converters (buck, boost, etc.) has
been suggested in [13] and [14], together with Lyapunov-
based techniques utilizing “energy in the increment.” The
same approach was extended to state and parameter estimation
and applied to switched-mode converters in [15]. This paper
proceeds along a similar direction, and combines control
and estimation of unknown load parameters using a time-
scale decomposition. The procedure presented here employs a
generalization of the dissipativity-based design procedure for
series resonant dc/dc converters given in [16] and [17]. The
procedure described in this paper allows for both resistive and
current loads and is verified in laboratory experiments that
employ simple analog hardware.

The standard single-loop controller structure for a series
resonant dc/dc converter is a fixed linear proportional–integral
(PI) controller whose input is the deviation in the output
voltage, and whose output is the change in switching frequency
(denoted as “frequency control” in [10]). A linear single-
loop controller has the advantages of being simple to design
and easy to implement. Its main disadvantage is a fairly
low-closed-loop bandwidth (for converters with switching
frequency of the order of 50 kHz and with wide-load variation,
the closed-loop bandwidth is often of the order of 20–40 Hz).
It was shown in [18] that this problem is not accidental,
as uncertainties introduced by load variations prevent the
PI structure (and other fixed linear controllers of reasonable
complexity) from providing both robust stability and robust
performance. Bode plots presented in the next section will
quantify this difficulty. High-performance solutions reported
in the literature [4], [9], [10] require additional measurements
of the variables in the resonant tank to overcome the problem.
This paper proposes a control structure consisting of a pro-
portional and integral part combined with a nonlinear gain to
improve performance of single-loop controllers.

The main control design approach advanced here is to
“shape” the stored energy of the closed-loop system (this
energy will be defined precisely shortly), while achieving
output voltage regulation. The presented methodology differs
from the feedback linearization and similar approaches as
it avoids some intrinsically nonrobust operations, such as
exact cancellations of nonlinearities. The control approach
utilizes the physical laws underlying energy conversion and
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Fig. 1. Circuit schematic of a series resonant converter.

the model structure in a fundamental way, as it consists of:
1) specification of the desired (target) energy function of the
closed-loop system (which contains incremental terms around
the intended operating mode, i.e., desired output voltage and
estimated load), and desired (periodic) steady-state trajectories
that provide output voltage regulation and 2) addition of
“damping” around this nominal trajectory (i.e., dissipation
of undesirable deviations of stored energy) that assures ex-
ponential convergence toward the nominal trajectory, thus
guaranteeing robust operation. This control design approach
is denoted as “dissipativity based” in control and robotics
literature [19]; while the basic version of this control de-
sign methodology assumes measurements of all states and
disturbances, an improvement that estimates the unknown,
but constant (parametric) disturbance [16], [19] is applied to
resonant dc/dc converters in this paper.

The paper is organized as follows. In Section II, a math-
ematical model of the series resonant converter is presented.
In Section III, a dissipativity-based control law is designed.
Simulations and laboratory tests are described in Section IV,
while conclusions are outlined in Section V. A particular struc-
tural property of dynamical systems that makes them amenable
to dissipativity-based design (differential flatness) is described
and applied to series resonant converters in the Appendix.

II. M ODELING A SERIES RESONANT CONVERTER

A series resonant dc/dc converter is shown in Fig. 1. Using
the notation given in the figure, a state-space model can be
written as

(1)

where denotes the switching frequency in rad/s,and
are the resonant tank voltage and current, respectively, and
is the output voltage supplying the load comprising a resistor

and a current sink .
The model (1) can be rewritten in the form that is standard in

the literature on dissipative Lagrangian (Hamiltonian) systems

[19], [20] using the state vector , and the
control input

(2)

In this representation, and are diagonal matrices

(3)

and

while is skew symmetric

as it corresponds to the terms that do not affect energy storage,
as (often denoted as “workless” terms in control
literature).

An application of the dissipativity-based control is not
straightforward, however, as the choice of nominal, periodic
state waveforms that achieve the desired behavior of the
output voltage is not apparent. To continue development of
a control-oriented model, at the next step the generalized
averaging procedure introduced in [5] is applied to model (1).
In particular, it is assumed that bothand are described with
sufficient accuracy when their first (time-varying) harmonics
are retained (denoted with and , respectively),
while is assumed to be a dc quantity. It has been observed
both experimentally and in numerical simulations that these
assumptions are reasonable in well-designed dc/dc series res-
onant converters [5], [18]. (In this derivation, it is assumed
that the converter switching frequency is maintained above
the tank resonant frequency, so the tank current is continuous,
as the resonant waveforms do not have the time to complete
a cycle before the next switching period begins [21].)

The key relationship that will enable a derivation of a
(nonlinear) model for the dynamics of harmonics (illustrated
here for the case of the tank capacitor voltage) is [5]

(4)

where denotes the time-varying Fourier coefficient evalu-
ated from

(5)

and corresponds to the fundamental frequency
of excitation.

A (nonlinear) model for the dynamics of time-varying
harmonics [evaluated “locally” in time, i.e., at timeusing
(5)], and assuming that the switching frequency varies slowly
from one switching cycle to the next, is then obtained as [5]

(6)
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This model can be written in the form of a fifth-order model
involving real-valued quantities, for example, by taking real
and imaginary parts of the first two equations. Let

, , and . The control input
is the switching frequency (and possibly the supply
voltage ); the outputs of interest are the magnitude of
the dc output (and possibly magnitudes of the series tank
current, denoted by , and voltage, denoted by ). Then the
model (6) becomes

(7)

For control design purposes, the linearization of this model
(denoted with , , and ) will be considered around an
equilibrium operating point (denoted with, , and ) corre-
sponding to fixed switching frequency and supply voltage. In
the calculation of equilibrium quantities, the phasor diagram
given in Fig. 2 is useful. Analysis of (6) in a steady state yields

(8)

Application of the Pythagoras theorem in the phasor diagram
in Fig. 2 results in

(9)

or in terms of the steady-state tank current (assuming that the
switching frequency is above the tank resonant frequency)

(10)

A key simplification for implementation of the proposed
control policy will involve the additional assumption that over
time horizons of interest in closed-loop control ,
where is the desired value of the output voltage. This
assumption is satisfied to a large degree because of the size
of the output capacitor and because of the bandwidth of
the controller. Now the small-signal model corresponding to
(7) can be derived around any equilibrium point by standard
linearization procedures.

In Figs. 3 and 4, the Bode magnitude and phase plots,
respectively, are presented from the deviations in switching
frequency (expressed in per unit of the resonant frequency)
to the deviations in the output dc voltage (these plots are
very similar to those reported in [8]). These plots are obtained
by linearizing (7) around equilibria corresponding to various

Fig. 2. Current and voltage phasor diagram at an equilibrium.

loads, and by considering the map from to . The
loads of interest are maximal ( ), nominal (

), a typical low load ( ), and the minimal
( , “no-load” condition). Large variations in the
linearized model due to loading changes should be noted,
motivating the use of robust controller design techniques.
These variations prevent simple fixed linear compensators
from achieving good performance over the whole operating
range. Observe that the resonant peaks in the magnitude plots
correspond to the difference of the resonant frequency
and the switching frequency , emphasizing the need for
considering performance robustness.

III. D ESIGN OF A CONTROL LAW

The qualitative analysis of dynamics of a series resonant
dc/dc converter adopted here is based on the fact that variations
in the tank variables are usually much faster than changes
in the output voltage. This time-separation property can be
established for the linearized system by using the participation
factors [22], [23]. Qualitatively, the participation of theth
variable in the th mode of a linear system as the amount
of that mode that appears in the response of theth variable
due to an initial condition perturbation in that variable. The
calculation of participation factors involves left and right
eigenvectors of the system matrix, as participation factors are
entries of the matrix obtained byentry-wisemultiplication of
the matrix of left eigenvectors (arranged in rows) and the
matrix of right eigenvectors (arranged in columns). In the so-
calculated matrix of participation factors, columns correspond
to various modes and rows correspond to different states.
A key property of these factors is their invariance under
similarity transformations of the state vector (e.g., due to a
different choice of units). At and
kHz, the eigenvalues are ,

, and . The variables –
participate approximately equally in the complex poles (i.e.,
very close to 0.25 in all cases), while the output voltage

participation equals 0.989 in the slowest mode. A
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Fig. 3. Bode magnitude plots for various loads.

Fig. 4. Bode phase plots for various loads.

similar statement can be made for the nonlinear model (1)
using a singular perturbation argument [25], as is often
substantially larger than or , as in the example below.
This is consistent with the observation that the energy stored
in the output capacitor is often an order of magnitude larger
than the sum of average energies stored in the tank elements.

Motivated by this reasoning, the approach presented here
follows [16] in assuming that the transients in the tank
variables are instantaneous relative to the output voltage. The
first step of control design is then to shape the energy stored
in the output capacitor assuming the magnitude of the first
harmonic of the tank current as a pseudocontrol input. Given
the required value of the tank current, on the second step
the corresponding switching frequency is evaluated using the
steady-state relationship between the switching frequency and
the magnitude of the tank current.

The main uncertainty in the operation of a series resonant
dc/dc converter is the dc load that is modeled as a resistance

in parallel with a current sink in (1). The control design
problem under consideration is to synthesize a controller that
will keep the dc output voltage fixed in the presence of
load disturbances, i.e., changes inand .

Let denote the conductance of the resistive load,
and let denote an estimate of a quantity. Then, for a
given reference (desired) value of the output voltage , the
error signal is defined as , and the following
quadratic function which contains error terms in the state and
in load parameters is considered:

(11)

where and are positive (design) constants that are used to
generate the load estimates from the available output voltage
measurement

(12)
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Fig. 5. Block diagram of the dissipative controller for a series resonant
converter.

and

(13)

Given that the first term is dimensionally (incremental) energy,
the whole function is often referred to as an energy function;
it may serve as a Lyapunov function if its derivative can be
shown to be uniformly negative (with standard nondegeneracy
conditions [24]). Recall that in this calculation we assume
that the tank transient are instantaneous, so our model for

includes only the third equation of (6), with the current
magnitude as the (pseudo) control input.
The control design task is thus to find the to guarantee
that the time derivative of will be negative. Assuming
that the loads and are constant (and unknown), after
calculating the derivative of (11), and taking into account the
third equation in (6), (12), and (13)

(14)

To make the right-hand side of (14) negative, is selected
to cancel the sign-indefinite terms and to add a negative term;
since is nonnegative by definition, it has to be limited
from below by zero

(15)

which results in

(16)

where is another positive design constant whose purpose
is to improve the rate of convergence of to zero and
to make that rate less dependent on the load. Given the
pseudocontrol , the actual control (switching frequency)
is evaluated using the relationship which follows from (10)
with

(17)

A schematic of the proposed controller is shown in Fig. 5.
Note that this control policy establishes exponential con-

vergence of the output voltage to its desired value. Due to
issues of observability, it is not possible to guarantee that the
estimates of load parameters (and ) used in deriving the
required control input will converge to their true values. This
convergence does, however, take place when only one of the

Fig. 6. Circuit implementation of the dissipative controller for a series
resonant converter.

parameters is estimated (and the other one is known). If the
supply voltage varies parametrically (e.g., in steps with
frequency that is lower than the closed-loop bandwidth), then
the controller succeeds in maintaining the output voltage at

. Under those conditions parameter estimates may,
however, become unreliable.

The block diagram in Fig. 5 shows that the proposed
controller has a structure of a PI controller, with an added
static (memoryless) nonlinearity that maps to . This
suggests the possibility of an inexpensive implementation,
as it will be demonstrated in the next section. Gains, ,
and determine characteristics of transients following load
variations. A useful insight is obtained from the analysis of the
linearized closed-loop system with neglected tank transients.
Both the converter and the controller are first-order systems,
and the adjustable gains affecting transients are shown in
Fig. 5. The characteristic polynomial for a resistive load
( ) is The system has two
real poles (for typical component values), and the dominant
pole (i.e., the one closer to the origin) approximately equals

. (The approximation is based on the
Taylor series expansion for the square root function and uses
the fact that is much smaller than other terms in the
characteristic equation.) This dominant pole should not be
placed too far in the left-half plane, as tank transients may
become important (recall that the corresponding fast poles

, i.e., those corresponding to the tank variables, of
the full model are at ). Note also that an increase in
the proportional gain will lead to smaller deviations in
transients, but will at the same time mandate higher values of
the integral gain (for the same speed of response). Increase in

and is limited by the quality of available measurements
of the output voltage; in the experiments and
varies between 150–300 (so that the real part of the dominant
pole is approximately between500 and 250).
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Fig. 7. Comparison between experimentally observed and simulated transients inv0 for a resistive load.

Fig. 8. Simulated responses with linear controllers: PI (solid line) and lead controller (dashed line).

IV. SIMULATIONS AND LABORATORY TESTS

A. Test Setup

The example from [5] is used to illustrate the proposed
design approach, with parameter values H,
nF (yielding the resonant frequency of ),

mF, and V. In the case of purely resistive
load, the nominal load resistance is and

rad/s (corresponding to V,
V, A, and ). In the case of a mixed
load, A and . It is assumed that the system
initially operates at the nominal equilibrium, and then effects
of changes in load from the nominal value are explored: 1)
large-load deviation [ steps to 5 , an 70% reduction in
terms of power (assuming a fixed output voltage), orsteps
to 0.3 A, a 70% reduction]; 2) very large-load deviation in
which steps to 50 (97% load power reduction, an almost
complete load rejection); and 3) resistive load represented by

a pulse train, varying between 2–5, with the duty ratio 50%
and frequency 50 Hz. For simulation purposes, the nonlinear
model (6) has been implemented in the Simulink environment.

The controller requires load estimatesand that can be
readily produced with a single integrator, and the pseudocon-
trol can be calculated using simple circuit elements. The
main challenge in a circuit implementation is in producing
the switching frequency from the known (second-order)
steady-state relationship (17).

The experimental power circuit uses a MOSFET-based full-
bridge inverter and a Schottky diode-based rectifier. Small-
series/parallel-connected film capacitors are used for the res-
onant capacitance, and the resonant inductor is wound on a
powdered iron core. The output filter is composed of two 30-

F film capacitors in parallel with two 470-F electrolytic
capacitors. A Hewlett-Packard 6632A dc power supply is used
as an input source, and a Hewlett-Packard 6060B electronic
load placed in parallel with power resistors is used as a
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Fig. 9. Comparison between experimentally observed and simulated transient inv0 for a current load.

Fig. 10. Comparison between experimentally observed and simulated transient inv0 for a very large change in resistive load.

load. The experimental control circuit is constructed using
simple analog circuitry and closely mirrors the block diagram
structure of Fig. 5. A differential amplifier is used to sense
the output voltage, followed by an error amplifier which
generates an error signal based on the difference between the
reference voltage and the output voltage. A third opamp is
connected to act as an integrator stage, while a fourth opamp
(with a diode-clamped output) is connected to generate the
pseudocontrol from (17). The pseudocontrol current is
fed to the static nonlinearity circuit (described below), which
generates a signal ( ), which is proportional to the desired
switching frequency. This signal is in turn fed to a voltage-
controlled oscillator, whose output controls the power circuit
gate drives.

The circuit that implements the static nonlinearity is il-
lustrated in Fig. 6 Three opamp circuits with fixed gain
and adjustable offset are joined via diodes in a logical OR
connection to form the three-line approximation to the de-
sired static nonlinearity. This implementation was selected for

experimental convenience; static nonlinearities of comparable
precision can be constructed using a single amplifier and
passive components. As constructed, the control circuit re-
quires only two quad opamp packages and a voltage-controlled
oscillator and could be further simplified for commercial
implementation. The required level of complexity is thus on
par with that of other controllers for resonant converters and
does not appear to be a drawback of the approach.

B. Results

In Fig. 7, the experimentalresults for the output voltage
(solid line, downloaded from a digitizing oscilloscope) are
compared with simulation results [that are based on (17) and
on three-line approximation], with and .
The transient is initialized by the load change from
to . A good overall agreement can be observed, with
the differences being attributable to approximations used in
circuit implementation; the closed-loop bandwidth is in the
order of 300 Hz.
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Fig. 11. Simulated responses of a very large transient with linear controllers: PI (solid line) and lead controller (dashed line).

Fig. 12. Comparison between experimentally observed and simulated transient inv0 for a resistive 50-Hz pulse train load (g = 300, kdis = 1).

Next, the performance of the dissipativity-based controller
is compared with simulations with two fixed linear controllers
from [18] that are presented in Fig. 8; simulations in this and
in remaining plots are based on (17). One of the controllers
is a PI controller with transfer function , while
the other is a lead-type controller obtained through a quanti-
tative feedback theory (QFT) design methodology

. To make the comparison
fair, both designs aim to obtain a fast closed-loop response
over the whole assumed range of loads. Note that the speed
with which deviations in the output voltage can be eliminated
is inherently limited by the output resistance forming a parallel

combination, and this is especially pronounced for large
. The PI controller results in a more oscillatory response,

but with smaller excursions of the output voltage [18] (in both
cases the closed-loop bandwidth is of the order of 50 Hz).

Turning the attention to the case of a mixed load, in Fig. 9
the experimental results for the output voltage (solid line,

downloaded from a digitizing oscilloscope) are compared with
simulation results [that are based on (17), with and

]. The transient is initialized by the load change
from A to A, with a constant resistive
part . A good overall agreement is noted, with
the differences again being attributable to approximations in
the circuit implementation. The closed-loop bandwidth is of
the order of 400 Hz.

Next, very large-load changes in which load steps from 1.6
to 50 (97% load rejection) are considered. In Fig. 10, the
experimental results for the output voltage (solid line) are
compared with simulation results [that are based on (17),
with and , and not on the three-line
approximation]. The overall agreement, especially in terms of
voltage excursion, is quite good; the approximations used in
the circuit implementation are observed in the second part
of the transient. The closed-loop bandwidth is in the order
of 100 Hz. Next, the performance of the dissipativity-based
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controller is compared with simulations using the two fixed
linear controllers that are presented in Fig. 11. Observe that
the closed-loop bandwidth of the linear controllers is below
10 Hz.

Finally, the case of a persistently changing load is con-
sidered, for which classical design procedures based on fixed
linear controllers can provide very little guidance. The case
of a resistive load pulse train [ in (7)] that changes
from 2 to 5 with the frequency of 50 Hz will be considered.
The presented design procedure needs no modifications in this
case, and experimental and simulation results are presented
in Fig. 12. The difference between the two traces is again
small, and attributable to the approximations involved in
the circuit implementation. For comparison, the PI controller
gives substantially inferior results in this case—output voltage
transients are very oscillatory and span a 50% larger voltage
band.

V. CONCLUSION

The control design approach presented in this paper utilizes
physical insights (such as energy dissipativity) in both mod-
eling and control synthesis, as well as time-scale separation
in deriving a controller. The resulting closed-loop system is
inherently robust with respect to physical uncertainties, as
was demonstrated in presented experiments. The proposed
dissipativity-based nonlinear controller yields a performance
that is significantly improved when compared to the class
of linear fixed compensators: 1) the duration of a transient
is decreased close to an order of magnitude and 2) the
size of the output voltage excursion is less than half of
the one achievable with linear compensators of comparable
complexity. The closed-loop bandwidth of dissipativity-based
controllers is limited by the domain of validity of the assumed
model (in which resonant tank variables are assumed to be
much faster than the output voltage) and by the quality of
measurements of the output voltage.

APPENDIX

The controller presented in this paper is an example of
the “two degrees of freedom” control design approach: the
synthesis problem is separated into: 1) design of a feasible
trajectory for the nominal model and 2) regulation around
that trajectory using controllers that have guaranteed per-
formance in the presence of uncertainties and disturbances.
This approach is particularly well suited for differentially flat
systems: in practical terms, a system is differentially flat if a
set of outputs can be found (equal in number to the number
of inputs) so that all states and inputs can be determined
using only algebraic relationships and differentiation [26]
(note that the choice of outputs is unrestricted). While the
numerical differentiation is to be avoided in practice due to
noise amplification (and often is preceded with a projection to
a sufficiently rich set of well-behaved functions), the property
of flatness often translates into availability of computationally
attractive algorithms. In other words, the property of flatness
enables a replacement of analysis of (nonlinear) differential
equations with analysis of (nonlinear) algebraic equations.

In the case of linear systems, the differential flatness is
equivalent to controllability. There are, however, no systematic
procedures for determining flatness of nonlinear dynamical
models at this time. The differential flatness of second-order
models of switched mode converters (boost and buck–boost),
and their cascades has been addressed in [27].

If the (linear) model of a series resonant converter in
which resonant tank dynamics are assumed to be instantaneous
(“singularly perturbed” case [16]) is considered, then it turns
out to be differentially flat. The “flat” output is the output
voltage—with known parameters, from this output and its
derivative, it is easy to recover the input. The more detailed
averaged model (7) of the system is also flat if both frequency

and are assumed to be available control inputs (commu-
nicated to us by R. Ortega and E. Delaleau of Supelec-LSS,
France).
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