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Abstract—Transmission lines and their lumped approximating
networks have long been incorporated into radio-frequency power
amplifiers to improve efficiency and shape circuit waveforms
and are beginning to perform a similar roles in high-frequency
switched-mode power electronics. Though lumped line-simulating
networks are often preferred to their distributed exemplars for
reasons of design flexibility and manufacturability, the impedance
peaks and nulls of such lumped networks must be aligned in
a precise, harmonic manner to minimize loss and symmetrize
converter waveforms. This paper addresses the issue of harmonic
frequency alignment in line-simulating networks, presenting
new analytic results for predicting the impedance-minimum and
impedance-maximum frequencies of networks in a ladder form.
Two means of correcting for the observed harmonic misalign-
ment in practical structures will be presented, corroborated by
measurements of laminar structures built into the thickness of
printed-circuit boards. These structures comprise inductances
and capacitances whose dimensions are largely decoupled, such
that the simulated line can be accurately analyzed and designed
on a lumped basis. The presented techniques will be placed within
a power-electronics setting by a representative application incor-
porating a lumped, line-simulating network.

Index Terms—Distributed system, lumped model, transmission
line.

I. INTRODUCTION

THE application of transmission lines to power electronics
is a promising technique for miniaturizing DC–DC and

DC–AC converters, and is considered here and in a com-
plementary paper (see [1]) at the component and converter
scale. This paper will focus on component-level techniques,
presenting methods for modelling and constructing networks
that mimic transmission lines. Such transmission-line analogs
can introduce delay into switching cells in a manner that con-
veniently reduces the total amount of inductance or capacitance
required to realize an energy-processing function. Such a de-
crease in “bulk” energy storage offers unique implementation
advantages, such as compatibility with available laminar con-
struction techniques, and a shift to low-loss, air-core magnetics.
Moreover, whereas reduction of high-frequency parasitics is
a major preoccupation of circuit and component design, the
delay networks considered in this paper incorporate parasitics.
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Tolerance for these unavoidable component resonances encour-
ages faster switching and may further decrease a converter’s
energy-storage requirements.

Section II will present, as motivation for this work, the wave-
form-shaping and symmetrizing properties of transmission
lines that are useful in tuned power circuits. Section III will
consider the boundary between lumped and distributed systems
for line-simulating networks in ladder form, with particular care
given to the frequencies at which such networks’ driving-point
impedance is at a local minimum or maximum. Measurements
of iterated networks—compact, laminar structures embedded
in the thickness of printed-circuit boards—will demonstrate the
predicted deviation of impedance-extrema frequencies from
harmonic coincidence. Sections IV and V present two tech-
niques which compensate for these deviations and achieve more
accurate harmonic alignment of impedance peaks and nulls.
The analytic and synthetic techniques of Sections IV and V are
again verified by measurements of high-order structures
constructed into the thickness of printed circuit boards. Sec-
tion VI previews the application of transmission-line analogs
to high-frequency inverters, and orients the results within the
context of power-circuit miniaturization.

II. BACKGROUND

Open- and short-circuited quarter-wave transmission lines
have reactive driving-point impedances with harmonically
related maxima and minim; see Fig. 1(a), and [2, Ch. 2]. These
aligned peaks and nulls—whether developed by a distributed
transmission line or one of its lumped analogs—have long been
utilized to shape waveforms and improve efficiency in radio-fre-
quency power amplifiers (e.g., [3, Ch. 14] and [4]–[8]). Similar
applications to the design of high-frequency switched-mode
power electronics are gradually emerging [9]–[14], and can
be regarded as a high-order extension of single-resonant tech-
niques [11], [12] for reducing passive-component bulk.

The waveform-shaping behavior of a transmission-line res-
onator terminated in a short circuit is clarified in Fig. 1. With a
length and some distributed inductance and capacitance

per unit length, the input impedance of a lossless line
is a transcendental function with an infinite number of -axis
poles and zeros [2]. The zeros of lie at , where

for and

(1)

Impedance maxima, likewise, are located at odd multiples
of the principal quarter-wave resonance . Because

the line will not sustain applied voltages at even harmonics of
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Fig. 1. Input impedance (left) of a line of length ` terminated in a short circuit. When excited periodically at a frequency equal to the principle quarter-wave
resonance, the line enforces odd- and even-harmonic symmetries in voltage and current, respectively.

Fig. 2. Input impedance of normalized, iterated L-networks. The � subscript of the rational impedance functions (Z = (n )=(d )) corresponds to the number
of iterated L-sections. Note that the networks’ short-circuit terminations effectively remove the last L-section capacitor.

,1 the voltage waveform at the input port contains only odd
multiples of the fundamental frequency and is half-wave sym-
metric for excitation periodic in , as depicted in
Fig. 1(b). At odd multiples of the line does not draw signifi-
cant current. The terminal current has only even harmonics and
is half-wave repeating [cf. Fig. 1(c), where the line’s input cur-
rent is periodic with one-half the period of the source].

Note that the symmetry relations are also valid for a
half-period of effort by the source. With reference to Fig. 1(b),
consider the case of a line excited by a switch which closes
from 0 to radians of the fundamental period . When the
switch imposes a voltage waveform during the first half of the
cycle, the transmission line becomes energized so as to impose
a half-wave symmetric voltage at the input terminal during the
second half cycle. The line stores the voltage waveform in a trav-
elling wave along its length, which returns delayed by one-half
fundamental period and inverted, because of the power-reflec-
tion condition at the short-circuit termination. The applied cur-
rent wave also returns, delayed seconds but not inverted,
so that the line attempts to do the same work on the input net-
work that was done on the line in the first half of the cycle.

Particular care must be given to the harmonic coincidence
of the impedance peaks and nulls of line-simulating networks
to preserve the waveform-symmetrizing properties of their
distributed exemplars. As is discussed in Section VI, such

1The line is a quarter-wave transformer of the short-circuit termination at
! = ! , with a large impedance at that frequency and all its odd multiples.
Recall that, for every additional �=4 length of line, the driving-point impedance
is inverted. In the lossless case, the line transforms the termination from a short
! open ! short ! � � � for successive zero ! pole ! zero ! � � �, at each of
which, successively, the line is electrically one quarter-wavelength longer.

symmetry can be leveraged to reduce switch stresses, improve
converter efficiency, and—significantly for miniaturization
and control bandwidth—eliminate bulky blocking elements
in converter topologies. The next three sections present
methods for achieving such harmonic alignment, and clarify
the boundary between lumped and distributed systems for a
class of -ladder networks of the so-called Cauer form.2

III. ITERATED NETWORKS

A compact approximation of a transmission delay can be con-
structed by cascading L-sections, as exemplified by the three-,
four-, and fivefold iterates of Fig. 2. In the case of such iterated,
artificial lines terminated in their characteristic impedance, pub-
lished bounds are available to guide a designer in selecting the
order of an approximating network [15], [16, Ch. 5]. A designer
can choose how many iterated L-sections, and of what electrical
length, need to be concatenated for some tolerable impedance
mismatch with a distributed line. No quantitative guidelines of
general applicability, however, appear to have been published
for unmatched lines, i.e., for approximating the frequencies of
successive -wave resonances of artificial lines when they are
terminated with an open or short circuit.3 This unmatched case

2Though cascades of resonators, notably, can also simulate line impedance,
we focus upon Cauer realizations because of their relative compactness beyond
the fourth order [11], [12].

3The advice that the electrical length ` of component networks be shorter than
a some fraction of the smallest signal wavelength of interest is often repeated
[16], where “some fraction” is usually set somewhat arbitrarily as the upper
bound ` < �=10).
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is particularly important for the filtering and symmetrizing func-
tions of transmission lines as applied to power-electronics cir-
cuits.

To understand how minima and maxima in shift for
a given degree of discretization in an iterated network with
a short-circuit termination, first consider the impedances of
the normalized networks of Fig. 2. As shown in the topmost
network, all inductors have a value of 1 H, and all capacitors
a value of 1 F.4 The input impedances for the normalized
networks are a ratio of a numerator (an odd polynomial in )
and a denominator (an even polynomial in ) with subscripts

equal to the number of inductors in the network.
As is evident in Table I, the numerator and denominator

coefficients of and are diagonal sequences from Pascal’s
triangle (cf. the left-justified triangle on the right of Table I,
in which the diagonals for the polynomials in 3, 4, and 5
are shown in boxes). These diagonal sequences are indexed
by increasing , beginning with for the zeroth-order
polynomial, 1, topmost in the triangle. When expressed in
the staggered-order form of and , these polynomials are
known as the Fibonacci polynomials .5 The roots of the
Fibonacci polynomials are derived from hyperbolic functions
in [17], though Möbius expressed the roots of collapsed-order
versions of the polynomials while deriving a periodicity con-
dition for Möbius transforms [18]. The coefficients from the

diagonal in Table I, for instance, correspond, in
Möbius’ formulation, to the polynomial

which has five roots given by

for

These roots can also be expressed in terms of the roots of unity;
i.e., if denotes any th root of 1, then the corresponding root

is , e.g., for the eleventh root of unity with
angle

Pole and zero frequencies of can be recovered from
Möbius’ analytic roots in by the substitution ,
from which the peak frequencies are

for odd and (2)

4The impedance levels and critical frequencies of the cascaded sections can
be denormalized without affecting the relative frequency relationships among
poles and zeros.

5F (x) evaluated at x = 1 yields the mth Fibonacci number, as defined
by the recurrence relation F � F + F , where m = 3; 4; . . . and
F = F = 1

where is the floor function. Zero frequencies, likewise, are
given by

(3)

for even and

In (2) and (3), is the Pascal-diagonal -index for the
denominator (pole) polynomial, and is the -index for
the numerator (zero) polynomial. Note that is always one
greater than . These results provide analytic expressions for
the pole and zero locations of uniform lumped-element trans-
mission lines with short-circuit terminations. The impedance
extrema for open-circuit terminations are given by the ex-
pressions above, after exchanging pole and zero locations
appropriately.

Fig. 3(a) shows peak and null frequencies for increasing num-
bers of cascaded L-sections, demonstrating the alignment of
conjugate impedance poles with the range of
over . Critical frequencies crowd beneath
the cut-off frequency, departing further from harmonic coinci-
dence with increasing . Impedance nulls, moreover, are never
equidistant between adjacent peak frequencies as in an ideal,
lossless transmission line, but are always closer to the adjacent,
lower frequency pole.

A short-circuit impedance measurement of a network that
approximates 30 iterated sections is shown in Fig. 4(a). The
frequencies of local maxima and minima in driving-point
impedance are depicted by the and markers in Fig. 4(b),
matching well with the predicted pole/zero locations6 from (2)
and (3) [the dashed line shows the locus of analytical roots
from (2)]. Further details of the construction and dimensions of
of this iterated network are provided in Section IV.

Whereas a transmission line terminated in an open or
short is capacitive and inductive over equally broad ranges
of frequency, the iterated-network is capacitive over an
increasingly narrow band following each conjugate pole, so
that the phase envelope of Fig. 4(a) has an inductive bias at
higher frequencies. This tendency is quantified for the mea-
sured impedance of Fig. 4(a) by the modal coupling depicted
in Fig. 4(c). As developed in the Appendix, the coupling
coefficient is a measure of the separation between a modal
frequency and the zero introduced by exciting it. The for
lumped-line modes [dashed line, Fig. 4(c)] can be calculated
from the theoretical pole and zero frequencies of (2) and (3),
and is lower than the coupling of distributed-line modes (solid
line). Measured coupling coefficients (triangle markers) for a
network with 30 iterated sections closely follow the expected
trend, and quantifies the uneven spacing of pole and zero
frequencies observed in Fig. 4(a). Methods of improving both
harmonic coincidence [Fig. 4(b)] and coupling [Fig. 4(c)]
to approximate the impedance of a distributed line will be
considered in Sections IV and V.

6Fig. 4(b) shows all frequencies as a deviation �! from an integral multiple
of the fundamental resonance ! , e.g.,�!=2! for the first zero, and�!=3!
for the second impedance peak.
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TABLE I
TABULAR ARRANGEMENT OF IMPEDANCE-FUNCTION COEFFICIENTS

Fig. 3. Analytical prediction of the pole and zero frequencies for iterated L-section networks.

IV. ITERATED NETWORK WITH MUTUAL INDUCTANCES

The first method of compensating for the critical-frequency
shortfall observed in Section III is to introduce adjacent-
section mutual inductance into the iterated networks of Fig. 2.
Because the calculation of mutual inductances depends on
a precise specification of geometry, this section will begin
by detailing the structure through which we now propose to
transfer energy by both conduction current and mutual flux.
This specification will provide an opportunity to discuss how
the magnetically uncoupled measurements of Fig. 4(a) were
made. The inductance matrices introduced in this section were
calculated using FastHenry [19], a freely available program
which extracts inductances and resistances of 3-D conductor
geometries on a quasistatic basis. The section will conclude

with the impedance measurement of a magnetically coupled
network, with pole and zero locations summarized in the
manner of Fig. 4(b).

The effect of mutual inductances will be introduced by the
structure at the top of Fig. 5 built in a printed circuit board, from
which the the impedance data of Fig. 4(a) were collected. The
toroidal structure comprises 30 section inductances of one turn
a piece that are connected in series and tapped at
interior nodes with 29 equal capacitances . The total
tap capacitance is 915 pF and the total low-frequency self-in-
ductance of the toroid is 355 nH. The structure has the dimen-
sions shown in the top- and bottom-copper masks (reproduced
in Fig. 5), and is built on two-sided 62-mil printed circuit board.
Fig. 6 depicts a cross-section through the central axis of the
toroid. A mylar film is applied over the tap-capacitor plates,
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Fig. 4. Measured input impedance of 30 iterated, coupled L-sections, showing the trend in mode coupling and the trends in pole and zero frequencies.

with 1-mil adhesive copper foil forming the common node for
the taps (a capacitance of 157.6 pF/in was measured for this
method of construction). The structures was designed for a char-
acteristic impedance of 20 and a mode at 13.56 MHz.

was measured, with the first quarter-wave mode at
13.41 MHz.

Though a fully populated inductance matrix would be most
accurate for modelling turn-to-turn coupling in a toroid, a suit-
able approximation can be made by only considering adjacent
mutual terms (cf. the couplings in the
upper schematic of Fig. 5). Because of the large flux leakage in
a nonpermeable printed circuit, the mutual inductances between
any two ports (where a port is two adjacent tap terminals) falls
off rapidly with distance around the toroid. For the structure at
the top of Fig. 5, the single-turn self-inductance is 9.97 nH.7 The
mutual inductances decrease rapidly, from 1.47 nH between ad-
jacent turns, to 0.35 nH, 0.12 nH, moving clockwise or coun-
terclockwise along the toroid. Mutual values eventually become
small and negative when the turn-sections have antiparallel axes
at opposite ends of the toroid.

7There are actually two types of turn, which extend different amounts toward
the toroid’s center and have slightly different self inductances. These different
turns were designed for efficient packing of vias in the center rosette of the struc-
ture, so that each turn was able to accommodate three vias in parallel for each
traverse of the board. This construction technique lowers DC and AC resistance,
and was included in the analysis.

The lower network in Fig. 5 demonstrates, by means of T-net-
work transformations of the largest mutual terms, how induc-
tance in tap leads offsets the mutual induction between adja-
cent meshes and diagonalizes the overall -matrix. In the struc-
ture measured in Fig. 4(a), 20 80-mil long inductor-traces in
series with the capacitor branches cancel 1.47 nH of off-diag-
onal inductance to approximate the uncoupled, iterated meshes
of Fig. 2. Magnetic coupling between input and output was also
reduced in the measured structure by introducing a gap of two
turns in the full toroid. The lower tableau in Fig. 5 schematically
depicts the inductance matrix for this case, in which the induc-
tances in the upper right and lower left of the matrix have been
eliminated by introducing a gap.

By shortening the length of the tap leads, a designer can offset
the subcoincident8 alignment of critical frequencies observed
in an iterated network [cf. the dashed locus in Fig. 4(b)].
The effect of this change in tap inductance can be explained by
a frequency-dependent cancellation of the capacitance loading
the toroid. Fig. 7(a) presents the measured critical frequencies
of a toroid without tap extensions—but with the same dimen-
sions and tap capacitances—as the toroid in Section III. Com-
pared to the diagonalized critical frequencies, which are shown
in grey for comparison, the impedance peaks of the “undiag-

8“Subcoincident” means that critical frequencies fall below harmonic align-
ment.
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Fig. 5. For a network with adjacent-section mutual coupling (upper schematic), �-Y circuit transformations reflect the mutual terms as negative inductances in
the tap paths.

onalized” toroid are more nearly harmonic-coincident over a
broader range of frequencies. The negative mutual inductance
in the tap paths ( nH) is an impedance with capacitive
phase that increase with frequency like an inductance. This neg-
ative inductance cancels more and more loading capacitance at
higher frequencies, just compensating for the decrease in har-
monic alignment expected from the iterated network. For the
20 toroid measured here, the nH tap inductance is in
series with pF tap capacitance. An equivalent, fre-
quency-dependent capacitance for both elements is given by
the series combination

i.e., the effective loading capacitance has a knee frequency at
rad/s, beyond which it drops at 40 dB/decade. The

given and resonate at 750 MHz, but still affect the critical
frequencies by a percent or more a decade below the corner.
The 13th critical frequency, for instance, is a pole whose modal
capacitance is decreased by the factor

corresponding to a 2.7% increase in frequency (a 3.8% change
was observed). As in Section III, Impedance zeros still lie closer
to the neighboring, low-frequency pole than the higher-fre-
quency neighbor. The normalized zero frequencies are below
0.97, and the impedance-phase envelope is still inductive.

Fig. 6. Cross section of the toroidal structures from Fig. 5, shown with exag-
gerated thicknesses. The toroidal flux path is indicated between pairs of vias on
either side of central axis.

Modal coupling falls below the desired transmission-line locus,
and has shifted by less than from the values in
Fig. 4(c).

Though capacitance offset improves harmonic alignment of
higher frequencies, the alignment of the lowest critical frequen-
cies is of the greatest significance for enforcing waveform sym-
metries. These low-frequency poles and zeros are hardly shifted
by adjusting the tap inductances . As with the diag-
onalized structure of Section III, moreover, low modal coupling
prevents pole and zero frequencies from aligning simultane-
ously at harmonics of the first quarter-wave resonance. Without
harmonic zero alignment, the waveform-symmetrizing proper-
ties of transmission lines as applied to power electronics (see
Section VI) are compromised.

V. CAUER-SYNTHESIZED NETWORK

From the measurements presented in Figs. 4(b) and Fig. 7,
a salient problem of iterated networks the subcoincident align-
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Fig. 7. Summary of input-impedance measurement for 30 iterated, L-sections, with no tap extensions and a roughly tri-diagonal inductance matrix.

Fig. 8. Series connection of turns condenses the inductance matrix L of the base toroid into a lower-order network of coupled inductors (eight are shown).

ment of zero frequencies when impedance poles are near the
desired harmonic frequencies. Considered separately, the poles
and zeros of iterated networks have good harmonic alignment
for little design effort, less than % over the first four crit-
ical frequencies. Incidence is poorer (about % of frequency)
for poles and zeros considered jointly, and a designer may need
to consider more iterated divisions—possibly with a larger
overall size—to preserve the filtering and symmetrizing func-
tions of the lumped line.

A means of correcting the subcoincident alignment of both
poles and zeros without resorting to higher-order networks is to
abandon uniform sections in favor of -ladder elements de-
signed using Cauer synthesis. Cauer-derived networks preserve
the basic form shown in Fig. 2, but each series-path inductor and
shunt-path capacitance is specified independently to match the
impedance of a lossless line over some desired bandwidth. The
mathematics of synthesis is described elsewhere [20], [21], and
synthesized and values are assumed to be given for pur-
poses of this discussion.

The ladder values computed from Cauer synthesis can
be realized with lumped inductances and capacitances to form
a transmission-line approximating network. Of more interest
than this straightforward approach is a technique to realize a
desired Cauer network with the same family of laminar toroids
used in the measurements of Sections III and IV. To imple-

ment an “integrated” Cauer network with this planar construc-
tion technique, tap points can be placed around the base toroid so
that the turn-inductances between taps approximate Cauer-syn-
thesized values. Synthesized capacitances can now be added
around the periphery of the toroid to complete the Cauer-de-
rived network. The inductance matrix describing the complete
turn-by-turn magnetic coupling of the toroid is related to a new,
condensed inductance matrix by a the block-sum procedure de-
picted in Fig. 8. The new inductance matrix is described as “con-
densed” because the gathering of turns yields an equivalent net-
work of lower order than the densely tapped structure depicted
at the top Fig. 5.

Referring to Fig. 8, the self-inductance of a group of turns
in a series equals the appropriate block sum of the full,
turn-by-turn inductance matrix. The process of condensing the
full -matrix by progressive block sums is illustrated by the
partitioned matrices at the top right of the figure. Primed values
are self and mutual terms already condensed by summing, and
the three next turns along the toroid—for this example of ladder
development—are to be combined into one section inductance.
The condensed self-inductance and mutual terms are
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and

for

and

for (4)

where the lower-right submatrix remains undisturbed.
The series connection of three turns shown in Fig. 8 can be

expressed algebraically by noting that the gathered turns have
a total voltage drop equal to the sum of three individual port
voltages. The series connection introduces a transformation
between the original port voltages , and a new set of
port voltages

...

...

(5)

The corresponding current transformation imposes an equality
condition between connected terminals, so that ,
where the vector of new port currents. Under this trans-
formation, the condensed inductance matrix is found by
substitution to be

Though adjacent ports are shown in this example, with only one
gathering of turns, the basic structure of can be extended to
any set of simultaneous connections. As one would expect form
this turn-gathering procedure, the block sum of the condensed
inductance matrix is identical to the block sum of the original
30 30 FastHenry matrix.

The normalized inductances and capacitances synthesized to
match the first 20 nonzero critical frequencies of a lossless trans-
mission line are shown in chart of Fig. 8.9 The problem is to
apportion toroid turns such that the new groupings have induc-
tance-ratios that approximate the proportions in Fig. 8. For the
30-turn, 20 toroid used in previous examples, the taps start
off closely spaced at the input node, with turns per section
increasing counter clockwise toward the termination

turns per section

9Note that, while C is used to normalize subsequent, larger capacitances,
L is used as the basis for inductance normalization. L is representative of
the relatively constant inductance along the the artificial line’s length, and L
and C are close to the L and C values that would be necessary in an iterated
ladder with the same number of meshes, and with the same �=4 resonance.
For the Cauer synthesis problem at hand, the first section inductance L always
approaches a value 1=2 times as large as the second section, in the limit of many
meshes. This initial half-section has a higher cutoff frequency than the full LC
of the corresponding iterated line. Such half-sections appear frequently in more
ad-hoc approximations of transmission-line impedance (cf. [16, Section 5.7.3]).

The corresponding self-inductances of the condensed net-
work likewise increase as the block-sums of 11 induc-
tance submatrices

nH

The discrepancy between the sum of these self inductance
(353.5 nH) and the total toroidal self inductance (355 nH
measured, 366 nH calculated) is due to adjacent-section mutual
entries.

As in the case of adjacent-inductor coupling discussed in Sec-
tion IV, mutual inductances in an immediate off-diagonal
add to the self-inductances of the sections they couple, and ap-
pear as an impedance in the tap between coupled sections.
These mutual terms are of the order of 10% of the tap-to-tap
self-inductances, and must be taken into account for accurate
pole-zero placement in the Cauer-derived toroid. Assuming that
the condensed matrix is diagonalized with tap extensions (as
detailed in Section IV) we have only to consider the contri-
bution of neighboring mutuals to any given condensed section

(i.e., the inductances as designed
in Fig. 9). The progressive grouping of turns along the toroid
represented by (4) and (5), however, cannot explicitly account
for the mutual inductance of condensed sections yet to be de-
signed. The iterated method summarized in Fig. 9 circumvents
this difficulty by regrouping turns for each section once the
section is designed, refining the estimate of condensed
section-inductance ’ with a better approximation for the new
mutual terms. The initial guess for ’ is based upon the for-
ward mutual inductance to a block with an identical number of
turns . The Cauer-derived network measured in Fig. 10 was
designed using this method.

Fig. 10 shows the poles and zeros of measured impedance
for a Cauer-synthesized toroid based upon the 20 layout of
Fig. 5, with diagonalizing tap inductances and 11 condensed
sections. Though poles and zeros are both in the vicinity of
harmonic coincidence, their location seems much more uncer-
tain % than in the iterated networks. The alignment of the
lowest frequency poles and zeros is notably worse than the in the
iterated networks [cf. Figs. 4(b) and 7], where better alignment
was achieved with less design effort. Note that overall harmonic
alignment (i.e., considering poles and zeros together) is not ap-
preciably worse than in the iterated cases.

Critical-frequency alignment improves dramatically when
pole and zero frequencies are compared, not to harmonically
aligned values, but to the values expected after the process of
turns gathering outlined previously in this Section. Because
of the discrete choices for section-inductance available at
any given point in the network realization, the continuously
increasing and values (typified by Fig. 9) can at best be
approximated. Normalizing measured poles and zeros to the
frequencies computed from the approximated Cauer network
yields the alignment depicted in Fig. 10(b): % alignment
of poles and zeros over a broad frequency range, with tighter
coincidence when the first five or six critical frequencies are
considered alone. This result is a strong endorsement for the
accuracy of the inductance matrix computed with FastHenry.
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Fig. 9. Cauer-synthesized L and C values for a 11-section ladder designed to match 21 transmission-line nonzero critical frequencies. Flowchart of an iterative
method for determining tap locations along a toroid. The n are the number of turns in each Cauer-synthesized section with self-inductance L .

Fig. 10. Poles and zeros of the measured impedance of a Cauer-derived toroid, based upon a 30-turn gapped toroid. In the left plot, the measured critical frequencies
are normalized to the desired transmission-line locus. In the right plot, the frequencies are normalized to expectations from the synthesis model. Note that a
redesign of the PCB—accommodating more precisely the Cauer-derived inductances and capacitances—would be expected to achieve �1% frequency precision
and accuracy.

Note that stray capacitance (5 pF per tap in addition to the
parallel-plate value, as layed out in copper) and lead induc-
tance (10-nH lead inductance in series with the first section)
were considered when predicting the critical frequencies for
Fig. 10(b).

VI. APPLICATIONS

Power-electronics applications of the transmission-line
analogs explored in this paper are treated in an adjunct paper
[1]. To place this work within a useful context, however, con-
sider the schematic of Fig. 11, in which the dashed box around
the lumped transmission line replaces the input choke of a Class
E inverter. In the Introduction, it was mentioned that transmis-
sion-line techniques can reduce the total amount of inductance
or capacitance required to realize an energy-processing func-
tion, which in turn can have important manufacturing benefits.
For the case at hand, the Class E input choke (replaced in
Fig. 11) comprises an air-core solenoid, 21 turns of 18-gauge
wire, wound on a plastic former with a 26-mm diameter.
Significant for manufacturability, the transmission-analog
replacement is constructed directly into the thickness of a

four-layer, 2 oz. copper PCB. A 59-mil core was selected for
the magnetic thickness dimension, with capacitors constructed
across outer prepreg layers and an overall outer diameter of
4.4 in. The transmission-line input network is of the iterated
type analyzed in Section III, and is constructed with only
207 nH of planar inductance and about 500 pF of interlayer
capacitance. Compare these passive values with 8.02- H in-
ductance for the Class E design. The inverter with transmission
line circulates waveforms internally to accomplish its power
conversion function, exchanging large-valued blocking com-
ponents for high- resonant elements. This tradeoff will be
explored in the adjunct paper, as well as the reduced stresses
attending the natural square-wave switching introduced by
the transmission-line impedance (shown for an previously
published case [21] in Fig. 11).

Design decisions regarding the model order, characteristic
impedance, and losses of a lumped line analog have so far only
been considered with respect to the overall efficiency of par-
ticular power-electronics designs. In the inverter example con-
sidered in [1], for instance, a 28-turn, 20- toroid based upon
the design of Fig. 4 was selected because its first three zeros
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Fig. 11. Comparison of drain-voltage waveforms for a 82-MHz class-E inverter with an inverter incorporating a transmission-line analog (a so-called class �
inverter).

TABLE II
SUMMARY OF SYNTHESIS METHODS FOR TRANSMISSION-LINE ANALOGS

formed an even-harmonic set within 1% of frequency. Wave-
form shapes in the inverter—with symmetries providing zero-
voltage-switching opportunities—were realized by aligning the
switching frequency with this set of even-harmonic zeros. Be-
yond this constraint on zero frequencies, measured converter ef-
ficiency (rather than pole location or characteristic impedance
per se) was used to discriminate among designs. Systematic se-
lection of line parameters remains and important topic for fur-
ther study, as does a general treatment of loss for methods of
construction.

VII. CONCLUSION

This paper has considered critical-frequency alignment
(see Table II) of iterated and Cauer-derived transmission-line
analogs with planar, air-core magnetics. For the iterated net-
work of Sections III and IV, a relation between the critical
frequencies of cascaded sections and the roots of Fibonacci
polynomials has been presented. This result quantifies the
transition between a distributed line and its lumped ladder
approximations, and appears to be new in the literature. The
Cauer-derived line-simulating network, with nonuniform place-
ment of taps in approximation of the and values calculated
by Cauer synthesis, exhibited critical frequencies matching the
lumped-model prediction within %. Though the Cauer-de-
rived network had poorer harmonic coincidence that the iterated
networks, the precision of the MQS model allows this shortfall
to be overcome by design. Moreover, since the Cauer network
realizes a specified driving-point reactance, it alone—of the
three options presented—permits the simultaneous harmonic
alignment of poles and zeros necessary for the symmetrizing
function of transmission networks.

Fig. 12. Simple example of coupling.

APPENDIX

Whenever driving effort excites some mode, whether native
to the energy-domain of excitation or not, the coupling coeffi-
cient represents the extent of energy conversion, and is defined
over a cycle as

Consider a simple case of energy storage shown in Fig. 12(a): a
mass slides on a frictionless plane, and is tied to a mechanical
ground through a spring . A force with infinite authority—i.e.,
no source impedance—stretches and stores energy in it. All
of the energy delivered from the source stretches the spring, and
the drive is perfectly coupled to . For this case of zero source
impedance, the coupling coefficient .

Mode excitation is rarely as simple as the case pictured in
Fig. 12(a). Usually, energy stored in requires that some en-
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Fig. 13. Explanation of coupling in terms of pole/zero separation.

ergy be delivered to the exciting structure, as shown in Fig.
12(b). At frequencies far below resonance, the oscillator is com-
pliance-dominated (i.e., the energy stored in is negligible)
and stores energy in by stretching . If is stiff, is
strongly coupled to ; if is compliant, it is stretched consid-
erably, is relatively undisturbed, and the coupling is weak.

in this case can be expressed as the fraction of total energy
delivered to

In laboratory practice, the frequency separation between reso-
nance and antiresonance (i.e., between a modal resonance and
the zero introduced by exciting it) is a measure of the degree
of energy coupling. To understand this useful relationship, con-
sider the impedance of Fig. 13(a) for the network in Fig. 12(c)

and from Fig. 13(a) are found by setting numerator and
denominator to zero and solving for frequency, from which

and

The ratio bears a useful relationship to , and can be
expressed as

since

By the energy definition of coupling coefficient, and for some
applied current in the low-frequency, inductance-dominated
regime

which can in turn be related to the ratio

(6)

Using the gross pole-zero coincidence approximation

(7)

While (6) precisely determines from measured and , (7)
affords the insight that pole-zero spacing increases linearly with
increasing , to a better approximation as is small with
respect to either critical frequency. We can apply this single-res-
onant treatment of coupling to cascaded oscillators, as long as
we can ignore the impedances of neighboring intertia- or com-
pliance-dominated resonators, excited away from their tuned
frequencies. This approximation, and the others of this section,
are common practice within the transducer field [22, Section
4.8], and are a convenient means of comparing the alignment
of adjacent poles and zeros.
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