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Abstract—Piezoelectric components offer several potential ad-
vantages to power conversion including high power density and
efficiency capabilities compared to magnetics at small scales. Con-
verter architectures have been developed for efficient utilization
of piezoelectrics, but without fundamental criteria for designing
the piezoelectric components themselves. In this paper, we derive
figures of merit for the achievable efficiencies and power handling
densities of piezoelectric materials and vibration modes based
on realistic utilization in a power converter. These figures of
merit are likewise accompanied by geometry conditions that serve
as guidelines for high-efficiency, high-power-density piezoelectric
resonator design. We demonstrate use of these metrics to evaluate
commercially-available PZT and lithium niobate materials across
seven vibration modes, and we validate the figures of merit
and geometry conditions with numerical solutions of converter
operation and experimental results. The proposed figures of
merit are concluded to be highly representative metrics for
the capabilities of piezoelectrics in power conversion, and these
capabilities are shown to have favorable scaling properties for
converter miniaturization.

Index Terms—piezoelectric resonators, piezoelectric materials,
PZT, lithium niobate, dc-dc power conversion

I. INTRODUCTION

Magnetic energy storage elements such as inductors and
transformers pose fundamental limits to miniaturization for
power electronics; as magnetics scale to smaller sizes, their
power density and efficiency capabilities inherently decrease
[2], [3]. This motivates exploration of power conversion based
on other energy storage technologies that may be more con-
ducive to miniaturization. Piezoelectrics, which store energy
in the mechanical compliance and inertia of a piezoelectric
material, have very high power density and efficiency capabil-
ities with improved scaling properties to small sizes compared
to magnetics [4]. Piezoelectrics also offer the advantages of
planar form factors, ease of batch fabrication, and the potential
to use the energy storage element itself for electrical isolation.

The promise of power conversion based on only piezo-
electric energy storage is evident in magnetic-less converter
designs realized in [5]–[10] with single-port piezoelectric
resonators (PRs) and in [11]–[18] with multi-port piezoelectric
transformers (PTs). In [5], we enumerate practical PR-based
converter implementations that achieve high efficiency through
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TABLE I
MATERIAL STATE DEFINITIONS

u Mechanical Displacement (m)
T Mechanical Stress (N/m2)
S Mechanical Strain
E Electric Field Strength (N/m)
D Electric Flux Density (C/m2)

TABLE II
MATERIAL PROPERTY DEFINITIONS

Qm Mechanical Quality Factor
k Electromechanical Coupling Factor
va Acoustic Velocity (m/s)
ρ Mass Density (kg/m3)
ε Dielectric Constant (F/m)
s Compliance Constant (m2/N)
d Piezoelectric Charge Constant (C/N)
c Elastic Modulus (N/m2)
e Piezoelectric Strain Modulus (C/m2)
σ Poisson’s Ratio
Tmax Maximum Mechanical Stress (N/m2)
Smax Maximum Mechanical Strain
Emax Max. Electric Field Strength (N/m)

strategic utilization of the PR’s resonant cycle, resulting in
experimental efficiencies exceeding 99%. Other PR-based con-
verter implementations are demonstrated in [6]-[7], and [8]
explores use of high-frequency lithium niobate PRs to achieve
high power density. However, criteria for selecting piezoelec-
tric materials and/or designing PRs themselves remain less
clear in the context of power conversion. PT structures and
design strategies have been investigated in [18]–[27], though
these methods are not directly applicable to PRs. Piezoelectric
material and loss mechanisms have been reviewed extensively
in [28], though primarily in the context of actuation.

In this work, we present figures of merit (FOMs) for
piezoelectric materials and vibration modes specifically for
use as energy storage in power electronics. Focusing on PRs,
we derive FOMs for achievable efficiency and power handling
density, which are shown to depend on only material properties
assuming a realistic converter control sequence. We demon-
strate use of these FOMs to compare commercially-available
materials and vibration modes, and we validate the FOMs
with both numerical solutions and experimental results. In
addition to material and vibration mode selection, these FOM
derivations aid PR geometry design and elucidate fundamental
power handling scaling properties for PRs in realistic converter
implementations.

Since the initial publication of this work in [1], we note
that [8] has likewise explored material selection and PR design
with an additional focus on fabrication.
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Fig. 1. Considered PR vibration modes with electrodes denoted by shaded areas, displacement direction(s) marked with red arrows, and nodes / nodal planes
marked with red dots / dashed lines, respectively. The polarization direction of the PR is denoted with ‘P’, and each electrode is assumed to have area A with
distance 2l between electrodes. All surfaces are assumed to have no externally-applied stress (i.e., all surfaces are traction-free), and the origin is assumed to
be at the PR’s center for analysis in Appendix A. For material property tensors, it should be noted that the “3” direction corresponds to the polarization axis.
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Fig. 2. PR impedance in the proximity of a vibration mode, where fr is the
resonant frequency and far is the anti-resonant frequency.

II. PIEZOELECTRIC RESONATOR MODEL

PRs can be produced in a variety of shapes and electrode
patterns, and each configuration has a unique set of compatible
vibration modes depending the PR’s polarization direction,
electrode placement, and boundary conditions. To derive
power-conversion-based metrics for piezoelectric materials, we
focus on the fundamental frequencies of the vibration modes
displayed in Fig. 1. These vibration modes can be grouped into
two categories that permeate throughout this work: modes for
which the applied and induced electric fields are parallel (||),
and modes for which these fields are perpendicular (+).

Piezoelectric materials are governed by coupled constitutive
relations between mechanical strain (S), mechanical stress (T ),
electric field strength (E), and electric flux density (D) due to
the direct and converse piezoelectric effects [29], [30]:

S = sET + dtE (1)

D = dT + εTE (2)

in which bold quantities represent tensors. Parameters for
these equations are defined in Tables I and II. Superscripts
of S, T , E, or D indicate the respective state held constant
during measurement (e.g., sE indicates compliance at a zero
or constant electric field), and t refers to the transpose.

TABLE III
PIEZOELECTRIC RESONATOR MODEL PARAMETERS [29]

Parameter Parallel (||) Perpendicular (+)

Gf
1
l

1
a

γo
√
π2 − 8k2

√
π2 + 8 k2

1−k2

Cp εT (1− k2)A
2l

εT (1− k2)A
2l

C 8k2

π2−8k2
Cp||

8k2

π2(1−k2)
Cp+

L 1
2G2

f
k2v2aCp||

1−k2
2G2

f
k2v2aCp+

R 1
Qm

√
L||
C||

1
Qm

√
L+

C+

For thickness mode, Cp = εS A2l . For radial mode parameters, see Appendix A(c).

Combined with the Newtonian equation of motion, (1) and
(2) reduce to an acoustic wave equation that dictates sinusoidal
time- and space-dependent solutions for u, S, T , and E; this
is described with more detail in Appendix A. With all surfaces
in Fig. 1 assumed to be traction-free, the maximum amplitudes
of S, T , and E each occur at the center of the PR.

The frequency f of the acoustic wave propagating through
the PR is expressed as

f =
κ

2π
va = Gf

κo
2π
va (3)

in which κ is the wave number (in rad/m) and va is the acoustic
velocity (in m/s) of the PR material [29]. We also define κo
to be the geometry-normalized wave number (in rad), from
which we have extracted the geometry-dependent factor Gf .
Gf is different for parallel and perpendicular vibration modes
and is displayed for each in Table III. For a given material,
Gf sets the resonant frequency of a PR design.

The PR’s electrical impedance can be likewise derived
from the acoustic wave solution and is shown in Fig. 2 as a
function of f . The PR exhibits inductive behavior in the region
between the resonant (fr) and anti-resonant (far) frequencies;
this region is of most interest to power conversion since
inductive loading enables zero voltage switching (ZVS) and
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Fig. 3. Butterworth-Van Dyke circuit model for PRs [31]. Parameters are
defined in Table III [29].

other high-efficiency behaviors [5]. The inductive region spans
the following ranges of κo for parallel (||) and perpendicular
(+) vibration modes, respectively:

γo||
2

< κo|| <
π

2
(4)

π

2
< κo+ <

γo+
2

(5)

for which factor γo is displayed in Table III.
The PR impedance characteristic shown in Fig. 2 can

be modeled by an equivalent electrical circuit (ie. the
Butterworth-Van Dyke model [31]) illustrated in Fig. 3. For
excitation of a PR’s fundamental frequency, this model has
the parameters shown in Table III, which are generalized to
parallel and perpendicular vibration modes [29], [32], [33]. A
is the electrode area, 2l is the distance between the electrodes,
and the material parameters of interest are shown for each
vibration mode in Appendix A. This electrical model serves
as the basis for how we conceptualize the PR’s behavior:
fr corresponds to series resonance between L and C, and
far occurs at parallel resonance between Cp and the series
combination of L and C. The model’s full derivation for all
considered modes can be found in [29], and [1] provides this
derivation among others for the length extensional mode1.

III. AMPLITUDE OF RESONANCE MODEL

We employ the circuit model of Section II to analyze the
PR’s behavior in a power converter. Because PRs tend to have
very high quality factors in the proximity of their resonant
frequencies, we assume iL to be sinusoidal. The amplitude of
iL (IL) then provides insight into the amplitude of the PR’s
mechanical resonance, which dictates its mechanical energy
storage and loss [5].

A. Assumed Converter Operation

To model PR behavior as utilized in a converter, we assume
operation based on either of the highest-efficiency step-down
switching sequences analyzed in [5]. These sequences are
each comprised of six stages: three “connected/zero stages”
(ie. stages in which the PR is connected to the source-load
system) alternated with three “open stages” (stages in which
the PR is open-circuited and Cp charges/discharges through

1The vibration mode analyzed in [1] is referred to as the thickness
extensional mode, though it assumes the k33 coupling coefficient. Thus, the
analysis in [1] corresponds to this work’s length extensional mode (with end
electrodes) analysis, except with one electrode rigidly mounted.
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proposed in [5].
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Fig. 5. Experimental waveforms and associated switch signals for switching
sequence Vin-Vout, Zero, Vout from [5]. Numbers 1-6B designate con-
nected/zero stages (odd) and open stages (even). Vin = 100 V, Vout = 60
V, Pout = 4 W.

resonance). Further, these switching sequences are constrained
for the following high-efficiency behaviors:

1) Resonant “soft” charging/discharging of the PR’s Cp
during open stages.

2) Zero-voltage switching (ZVS) of all switches.
3) All-positive instantaneous power transfer during con-

nected stages.
These highest-efficiency switching sequences are capable of

constant-efficiency voltage regulation for 1
2 ≤

Vout
Vin
≤ 1. One

such switching sequence is referred to as Vin-Vout, Zero, Vout,
named according to its connected/zero stage voltages [5]. An
example topology for realizing this sequence is visualized in
Fig. 4 with corresponding waveforms in Fig. 5; we utilize this
implementation for experimental validation in Section VII(b).

B. Model Introduction

The PR’s ideal amplitude of resonance (IL) can be calcu-
lated from the total magnitude of charge transferred by iL
during each resonant cycle (qtotal) as illustrated in Fig. 6.
This charge transfer calculation depends on the converter’s
specific switching sequence and considers both connected/zero
stages and open stages for realistic representation [5]. The
highest-efficiency sequences discussed in Section III(a) have
the following IL, which varies based on operating point:

IL :=
π

2
fqtotal = π

(
Pout
Vin

+ fCpVin

)
(6)

where Pout =
V 2
out

Rload
as defined in Fig. 4.



TABLE IV
MAXIMUM AMPLITUDES OF RESONANCE BASED ON MATERIAL LIMITS

Vibration Mode ILmaxSo ILmaxTo ILmaxEo ILmaxLo

Length Extensional (s) va
d31
sE11

Smax sin(κo) vad31Tmax cot(κo
2

) vak2
31ε

T
33Emax tan(κo)

√
4Qmk

2
31ε

T
33va

π
H

Length Extensional (e) va
d33
sE33

Smax sin(κo) vad33(1− k2
33)Tmax cot(κo

2
) vak2

33ε
S
33Emax

sin(κo)

cos(κo)−k233

√
4Qmk

2
33ε

S
33va

γo
H

Thickness Shear (side) va
d15
sE55

Smax sin(κo) vad15(1− k2
15)Tmax cot(κo

2
) vak2

15ε
S
11Emax

sin(κo)

cos(κo)−k215

√
4Qmk

2
15ε

S
11va

γo
H

Thickness Shear (end) va
d15
sE55

Smax sin(κo) vad15Tmax cot(κo
2

) vak2
15ε

T
11Emax tan(κo)

√
4Qmk

2
15ε

T
11va

π
H

Thickness Extensional vae33Smax sin(κo) va
e33(1−k2t )

cE33
Tmax cot(κo

2
) vak2

t ε
S
33Emax

sin(κo)

cos(κo)−k2t

√
4Qmk

2
t ε
S
33va

γo
H

Contour Extensional 2d31va
sE11(1−σ)

Smax sin(κo) 2vad31Tmax cot(κo
2

) vak2
pε
T
33Emax tan(κo)

√
4Qmk2pε

T
33va

π
H

Radial 4d31va
sE11(1−σ)

SmaxJ1(κo)
2vad31(1+σ)
1
2

(1+σ)−Ψ
TmaxJ1(κo) vak2

pε
T
33(1 + σ)Emax

J1(κo)
Ψ

√
2Qmk2pε

T
33va

κo,r
1+σ
− 1−σ
κo,r

H

Numerical subscripts indicate the tensor components relevant for each mode [29]. For ILmaxLo, we have substituted H =
(
Ploss
As

)
max

.
For radial mode, Appendix A(c) contains the definition for Ψ and series expansions for Bessel functions.
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Fig. 6. Sinusoidal approximation of iL and resulting amplitude of resonance
IL, based on the charge transfer qn required of each switching stage n [5].

In accordance with the switching sequences discussed
in Section III(a), this IL equation assumes soft charg-
ing/discharging of the PR’s Cp, ZVS of all switches, and all-
positive instantaneous power transfer for high efficiency [5].
Thus, (6) models the PR’s amplitude of resonance for typical
converter operation, which we assume throughout this work.

C. Material Limits

A PR’s maximum amplitude of resonance (ILmax) may be
determined by its material’s limits for strain (Smax), stress
(Tmax), and electric field (Emax). Such potential limits include
yield stress and strain, as well as coercive field (i.e., the electric
field strength at which depolarization occurs). We can derive
the relationship between IL and the PR’s physical states using
the constitutive relations (1)-(2) and the equation of motion.
This results in the following relationship between IL and
the amplitude of mechanical displacement (∆) as derived in
Appendix B:

IL = κAGf
vad

sE
∆ sin(κo) (7)

Then, S, T and E can each be related to IL through
∆. This strategy can be utilized to determine the IL limits
corresponding to maximum strain (ILmaxS), maximum stress
(ILmaxT ), and maximum E field (ILmaxE) as demonstrated
in Appendix B. It is shown that ILmaxS , ILmaxT , and ILmaxE
have identical geometry terms, so their geometry-normalized

values (referred to as ILmaxSo, ILmaxTo and ILmaxEo, respec-
tively) are summarized for each considered vibration mode in
Table IV. The lowest-magnitude limit can be considered the
geometry-normalized maximum for IL:

ILmaxo :=
ILmax
AGf

= min(ILmaxSo, ILmaxTo, ILmaxEo) (8)

Thus, the geometry-normalized limit ILmaxo (and which
physical limit constrains it) can be determined based on
only material parameters and limits. ILmaxo is employed to
determine maximum power handling density in Section V.

D. Areal Loss Density Limit

Thermal management limitations may confine a PR’s ampli-
tude of resonance to lower bounds than its material’s physical
limits, so we likewise derive an IL limit based on areal
loss density. Material-dependent losses in the PR include
mechanical loss and dielectric loss; since mechanical loss
tends to dominate close to resonance [34], we focus on only
mechanical loss in the context of this work. We estimate
mechanical loss using IL and R [5]:

Ploss :=
1

2
I2
LR (9)

For an IL limit based on areal loss density, we assume that
most PR heat extraction occurs through a surface with area As,
and that a thermal design can safely accommodate a certain
quantity of PR loss per As. This areal loss density relates to
the PR’s operation as follows:

Ploss
As

=
1

2

I2
LR

As
=

1

2
I2
LoRo (10)

in which we have extracted geometry parameters from IL and
R, assuming As = A for parallel (||) modes, As = GfAl
for perpendicular (+) modes as defined in Table VI, and Ro
for all modes as defined in Table V (where Ro = GR, in
which G contains all geometry terms). For these assumed
surfaces, all geometry terms cancel and (10) shows a direct
relationship between areal loss density and ILo. This equation
can be rearranged to define a loss-limited maximum for ILo:



TABLE V
MECHANICAL EFFICIENCY FIGURES OF MERIT AND RELEVANT PARAMETERS

Vibration Mode G Bo Ro FOMM γo

Length Extensional (s) 4b
l

εT33(1− k2
31)κova

4π
π

2Qmk
2
31ε

T
33va

4Qm
k231

1−k231
1

π2κ̄o

√
π2 + 8

k231
1−k231

Length Extensional (e) A
l2

εT33(1− k2
33)κova

4π
γo

2Qmk
2
33ε

T
33(1−k233)va

4Qmk2
33

1
πγoκ̄o

√
π2 − 8k2

33

Thickness Shear (side) A
l2

εS11
κova
4π

γo
2Qmk

2
15ε

S
11va

4Qmk2
15

1
πγoκ̄o

√
π2 − 8k2

15

Thickness Shear (end) 4b
l

εS11
κova
4π

π
2Qmk

2
15ε

T
11va

4Qm
k215

1−k215
1

π2κ̄o

√
π2 + 8

k215
1−k215

Thickness Extensional A
l2

εS33
κova
4π

γo
2Qmk

2
t ε
S
33va

4Qmk2
t

1
πγoκ̄o

√
π2 − 8k2

t

Contour Extensional 4a
l

εT33(1− k2
p)κova

4π
π

2Qmk2pε
T
33va

4Qm
k2p

1−k2p
1

π2κ̄o

√
π2 + 8

k2p
1−k2p

Radial πa
l

εT33(1− k2
p)κova

4π

κ2
o,r−(1−σ2)

Qmκo,r(1+σ)k2pε
T
33va

Qm
k2p

1−k2p
2
πκ̄o

κo,r(1+σ)

κ2
o,r−(1−σ2)

Appendix A(c)

Numerical subscripts indicate the tensor components relevant for each mode [29]. From (21), κ̄o = πγo
π+γo

(see Appendix A(c) for radial mode).

ILmaxLo =

√
2

Ro

(
Ploss
As

)
max

(11)

For perpendicular modes in which both non-l dimensions
are equal, an areal loss density based on A can be scaled
to As using Ploss

As
= Ĝ

4
Ploss
A (for contour extensional mode)

or Ĝ
π
Ploss
A (for radial mode). This assumes a PR design will

adhere to Ĝ, the condition for G corresponding to maximum
efficiency as derived in Section IV(a).
ILmaxLo is displayed in Table IV for each mode and can

be directly compared to ILmaxSo, ILmaxTo and ILmaxEo in
(8) to determine ILmaxo. It can also be utilized in Section V
to calculate loss-limited energy and power handling densities.

IV. MECHANICAL EFFICIENCY FIGURE OF MERIT

To quantitatively compare piezoelectric materials and vibra-
tion modes for power conversion, we first focus on achievable
PR efficiency; this has implications for both operating cost
and thermal management. Efficiency can be expressed as

η :=
Pout

Pout + Ploss
=

1

1 + Ploss
Pout

(12)

Thus, the impact of piezoelectric material properties on
efficiency can be examined through loss ratio Ploss/Pout,
which is desired to be as low as possible. As discussed in
Section III, we focus on only mechanical loss for this FOM.

A. Minimum Mechanical Loss Ratio

The mechanical loss ratio of a PR can be expressed as
follows, assuming Ploss in (9) and IL in (6):

Ploss
Pout

=
1
2
I2
LR

Pout
=
π2

2

(
Pout
V 2
in

R+ 2BR+
V 2
inB

2

Pout
R
)

(13)

in which we have substituted

B := fCp (14)

This loss ratio equation has only two operating point pa-
rameters (Vin and Pout) and two PR-dependent parameters
(B and R). We can explicitly separate the PR’s material and

geometry properties by extracting all geometry parameters
from B and R, which have the same lumped geometry term G
(as reciprocals), leaving only the material-dependent Bo and
Ro, respectively. Thus, (13) can be rewritten as

Ploss
Pout

=
π2

2

(
Pout
V 2
in

Ro
G

+ 2BoRo +
V 2
in

Pout
GB2

oRo

)
(15)

where

G := Gf
A

l
=

B

Bo
=
Ro
R

(16)

These parameters are displayed for each vibration mode in
Table V. It should be noted that we treat Qm as a material
property provided by the manufacturer for the purposes of this
study, though Qm may realistically vary from this value based
on PR shape, vibration mode, and mounting structure.

To derive the minimum mechanical loss ratio, we assume
that the designer has the flexibility to choose the PR’s geo-
metric dimensions. The loss ratio equation reached in (15) is a
second-order equation with respect to G as illustrated in Fig.
7(a). Minimizing (15) with respect to G reveals the following
G condition (denoted by Ĝ) and corresponding minimum
mechanical loss ratio:

Ĝ =
Pout
V 2
inBo

=
V 2
out

V 2
inBoRload

(17)

⇒
(
Ploss
Pout

)
min

= 2π2BoRo (18)

The condition in (17) cancels the operating point, load, and
PR geometry parameters in the loss ratio equation (18), so the
minimum achievable mechanical loss ratio for a PR depends
on only its material properties (i.e., quantities assumed in
Table II). Taking the inverse of (18), the following unitless
factor can be therefore considered a mechanical efficiency
FOM (FOMM ) for PR materials and vibration modes:

FOMM :=
1

2π2BoRo
(19)

FOMM is desired to be as large as possible, and it is
summarized in Table V for the considered vibration modes.
For an example of this derivation for a single mode, see [1].



B. Geometry Condition

A PR can be designed to achieve its material’s minimum
mechanical loss ratio at a nominal operating point by satisfying
G = Ĝ with its geometric dimensions. The order of magnitude
of Bo ranges from 10−8 to 10−6 for most piezoelectric
materials, which requires Ĝ >> 1 in (17) for most power con-
version applications. Thus, Ĝ often dictates l to be the shortest
geometric dimension, resulting in primarily planar PR designs.
Parallel vibration modes can be particularly advantageous for
satisfying large Ĝ values in that both the numerator (A)
and denominator (l2) have squared length dimensions. Mode
configurations for which l is not the shortest dimension (length
extensional and thickness shear, each with end electrodes) have
limited practicality; their relative dimension assumptions can
only be maintained for very high V 2

in

Pout
.

C. Operating Frequency

Though Bo and Ro have no geometry dependence, Bo
depends on κo, which spans the ranges of (4) and (5) for
the inductive region shown in Fig. 2. Although the switching
sequence described in Section III(a) naturally spans this induc-
tive region, frequency is not an independent control variable.
To maintain the high-efficiency behaviors described in Section
III, the exact operating frequency (and therefore exact κo) is
dictated by the operating point [5].

Thus, we determine the frequency and κo that correspond
to the minimum loss ratio operating point in (17)-(18) for use
in the FOMs of Sections IV and V (though this is also useful
for broader converter design). Inserting Ĝ into (6) reveals both
addends of IL to be equal for this condition, which implies that
the PR’s charge transfer is split evenly between connected/zero
stages (resonating at fr with period 1

fr
) and open stages

(resonating at far with period 1
far

). Thus, both stage types
require half of their respective periods (for each transferring
1
2Qtotal), so the total period adds to 1

f̄
= 1

2fr
+ 1

2far
. This

reveals the highest-efficiency operating frequency to be the
harmonic mean of fr and far:

f̄ :=
2frfar
fr + far

(20)

which has the following geometry-normalized wave number
(also derived for radial mode in Appendix A(c)):

κ̄o :=
πγo
π + γo

(21)

Thus, assuming the switching sequence constraints listed in
Section III(a) are met, this is the operating frequency for which
(17) is satisfied and the minimum loss ratio occurs. This is the
operating frequency assumed for the remainder of this work.

V. POWER DENSITY FIGURES OF MERIT

A second point of comparison for piezoelectric materials
and vibration modes is achievable power handling density,
which poses a boundary for converter miniaturization. Useful
power density metrics must consider how the PR is to be
utilized in a converter (ie. not just energy storage capability),
so we again assume the amplitude of resonance model in

Ĝ

G

Ploss
Pout

(a)

l̂

l

Eout
vol or PoutAs

(b)
Fig. 7. On logarithmic axes, PR (a) loss ratio minimum and (b) volumetric
energy handling density (or areal power handling density) maximum.

Section III. To model the PR’s power handling capability as a
function of operating constraints, (6) can be rearranged such
that power delivered to the load is the following function of
IL:

Pout =
1

π
VinIL − CpfV 2

in =
1

π
VinIL −BV 2

in (22)

With (22), we derive maximum energy and power handling
densities considering the physical and loss-density limits for
IL presented in Sections III(b) and III(c), respectively.

A. Volumetric Energy Handling Density

Volumetric power density is a common metric for converter
power handling capability with respect to size. The PR’s
volumetric power density can be derived by first dividing (22)
by volume, where vol = 2Al:

Pout
vol

=
Pout
2Al

= Gf
( 1

2πl
VinILmaxo −

1

2l2
BoV

2
in

)
(23)

in which IL has been set equal to ILmax and geometry terms
have been separated from material properties.

It is evident that a PR’s volumetric power density is directly
proportional to Gf , and therefore f . The operating frequency
of a converter determines its driving and control requirements,
so we elect to normalize (23) to f for even comparison be-
tween PR vibration modes with respect to converter capability.
Such normalization results in the following expression for
volumetric energy handling density, defined as the quantity
of energy delivered to the load in one resonant cycle divided
by volume (not to be confused with energy storage density):

Eout
vol

=
Pout

vol · f =
1

κova

(1

l
VinILmaxo −

π

l2
BoV

2
in

)
(24)

We can then maximize this expression by assuming the
designer has the flexibility to choose l. Maximizing (24)
with respect to l as illustrated in Fig. 7(b) results in the
following l condition (denoted l̂) and maximum volumetric
energy handling density:

l̂ = 2π
BoVin
ILmaxo

(25)

⇒
(
Eout
vol

)
max

=
I2
Lmaxo

4πκovaBo
(26)

Thus, all operating point and geometry terms cancel in (26),
and the maximum volumetric energy handling density of a
PR depends on only its material properties (defined in Table



TABLE VI
POWER DENSITY FIGURES OF MERIT

Vibration Mode FOMV ED FOMAPD As

Length
Extensional (s)

I2Lmaxo
κ̄2
ov

2
aε
T
33(1−k231)

I2Lmaxo
πκ̄oε

T
33(1−k231)va

4bl

Length
Extensional (e)

I2Lmaxo
κ̄2
ov

2
aε
T
33(1−k233)

I2Lmaxo
πκ̄oε

T
33(1−k233)va

A

Thickness Shear
(side)

I2Lmaxo
κ̄2
ov

2
aε
S
11

I2Lmaxo
πκ̄oε

S
11va

A

Thickness Shear
(end)

I2Lmaxo
κ̄2
ov

2
aε
S
11

I2Lmaxo
πκ̄oε

S
11va

4bl

Thickness
Extensional

I2Lmaxo
κ̄2
ov

2
aε
S
33

I2Lmaxo
πκ̄oε

S
33va

A

Contour
Extensional

I2Lmaxo
κ̄2
ov

2
aε
T
33(1−k2p)

I2Lmaxo
πκ̄oε

T
33(1−k2p)va

4al

Radial I2Lmaxo
κ̄2
ov

2
aε
T
33(1−k2p)

I2Lmaxo
πκ̄oε

T
33(1−k2p)va

πal

Numerical subscripts indicate the tensor components relevant for each mode [29]. From
(21), κ̄o = πγo

π+γo
(see Appendix A(c) for radial mode).

II). The following can therefore be considered a volumetric
energy handling density FOM for direct comparison between
PR materials and vibration modes:

FOMV ED :=
I2
Lmaxo

4πκovaBo
(27)

which has units J/m3. FOMV ED is summarized for various
PR vibration modes in Table VI; we suggest use of the
minimum-loss wave number κ̄o as detailed in Section IV(c).
The corresponding volumetric power density can be calculated
by multiplying FOMV ED by a desired operating frequency,
though this frequency depends on l̂ for parallel modes2.

B. Areal Power Handling Density

In some applications, power handling capability per foot-
print area may be more useful to the designer than volumetric
energy handling density. Areal power density also becomes
more relevant for highly-planar PR designs, as often dictated
by Ĝ in (17) for maximum efficiency. Like Section III(c), we
assume the area of interest As = A for parallel modes and
As = GfAl for perpendicular modes as displayed in Table
VI. Similar to (23), the areal power density can be written as
follows with IL = ILmax and geometry terms extracted:

Pout
As

=
1

πl
VinILmaxo −

1

l2
BoV

2
in (28)

This expression can be likewise maximized with respect to
l, resulting in the same l̂ condition and the following maximum
areal power density:

l̂ =
2πBoVin
ILmaxo

(29)

⇒
(
Pout
As

)
max

=
I2
Lmaxo

4π2Bo
(30)

2For parallel modes, maximum volumetric power density occurs for l = 3
4
l̂,

though with diminishing returns with respect to frequency for l < l̂. The
volumetric power density at l = 3

4
l̂ is ≈18.5 % greater than that at l = l̂.

Like the maximum volumetric energy handling density in
(26), the maximum areal power density for a PR depends on
only its material properties. Thus, (30) serves as an areal power
handling density FOM for PR materials and vibration modes:

FOMAPD|| :=
I2
Lmaxo

4π2Bo
(31)

with units W/m2. FOMAPD equals FOMV ED scaled by κova
π

and is likewise summarized in Table VI for each considered
vibration mode. It should be noted that FOMAPD assumes
the area As corresponds to the PR’s relevant footprint, though
the validity of this assumption depends on the PR’s shape,
vibration mode, and mounting structure. For contour and
radial modes (i.e. modes for which both non-l dimensions are
equal), FOMAPD may be respectively scaled by 4

Ĝ
and π

Ĝ
for representative areal power densities based on A, assuming
a PR design will adhere to the Ĝ condition for maximum
efficiency. Since Ĝ varies by operating point, this scaled
FOMAPD for such configurations may introduce dependence
on operating point information.

VI. MATERIAL AND VIBRATION MODE COMPARISON

Equipped with FOMs for mechanical efficiency and power
density, we now demonstrate use of these FOMs to evaluate
piezoelectric materials and vibration modes for power conver-
sion. We first compare relative capabilities of commercially-
available variants of hard PZT, the most widely-utilized piezo-
electric material for sensing, actuation, transduction, and en-
ergy harvesting applications. This is followed by a comparison
of the seven vibration modes discussed herein for PZT and
lithium niobate (LiNbO3), a second piezoelectric material of
emerging interest for power conversion [4], [8]. It should be
noted that the results of these studies are meant to be more
demonstrative of the FOMs than prescriptive of the materials;
the results are sensitive to variation between manufacturers in
terms of measurement procedure and/or reporting of material
properties (particularly for Emax and Qm). This topic merits
a detailed experimental characterization of such materials and
vibration modes, which is beyond the scope of this work.

A. Comparing Materials

First, we compare commercial PZT materials based on
efficiency and power density for the thickness extensional and
thickness shear vibration modes (with side electrodes). We
collect and/or calculate the following properties for 30 hard
PZT materials from eight different manufacturers: Qm, εS33,
εS11, kt, k15, and va for each mode (va = πN

κo,r
, where N

is the manufacturer-provided frequency constant). Sinusoidal
amplitude Emax is conservatively estimated to be 500 V/mm
for all materials, and power density capability is assumed to
be limited by this Emax.

We use these properties to calculate FOMM and FOMAPD

for both modes with each material. Fig. 8 displays these results
with one FOM on each axis, and the considered materials
exhibit wide variation in terms of capability. The thickness
extensional mode (denoted by unfilled markers) generally
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Fig. 8. Comparison of hard PZT materials for power conversion based on FOMM and FOMAPD , overlaid with areal-loss-density contour lines. Filled and
unfilled markers indicate the thickness shear (side electrodes) and thickness extensional vibration modes, respectively.

demonstrates higher power density capability given the same
Emax, and thickness shear mode (denoted by filled markers)
shows higher efficiency capability given the same Qm.

Figure 8 is further overlaid with areal-loss-density contour
lines to help identify thermal management limits, which vary
based on design and application constraints. For a given areal
loss density limit, all points above the corresponding contour
line can be projected downward (in the -y direction, keeping
constant FOMM ) onto the allowable heat transfer line itself;
this new point conveys their maximum power densities given
the assumed limit. It can be inferred that many materials would
in fact never reach the assumed Emax limit without aggressive
thermal management; for a given thermal capability, higher
power density is instead enabled by a higher FOMM . In the
context of this study, this implies that the thickness shear mode
enables higher power densities than the thickness extensional
mode for practical areal loss density constraints (≤ 1 W/cm2).

B. Comparing Vibration Modes

We now compare the seven vibration modes analyzed herein
for hard PZT and lithium niobate using material properties
from [43] and [44], respectively (we assume these properties
as provided, though different crystal cuts can be similarly
compared). We calculate FOMM , FOMV ED, and FOMAPD

for each vibration mode and display them in Table VII. The
same Qm and Emax are assumed for all modes of each
material; Qm is assumed to be 2200 for PIC181 and 10000 for
LiNbO3 (as reported in the datasheets), and Emax is assumed
to be 633 V/mm for PIC181 and 7000 V/mm for LiNbO3

(1/3 the coercive field of each material). An areal loss density
limit of 1 W/cm2 is also assumed, so the displayed FOMs are

based on the lower of these two limits as described in Section
III(c). FOMs that have been scaled by Ĝ

4 or Ĝ
π are marked

with asterisks in Table VII; these FOMs assume Vin=100V
and Pout=10W. For this operating point, we also display Ĝ
and a corresponding theoretical design for both maximum
efficiency and maximum power density (based on Ĝ and l̂) for
each mode; modes for which this theoretical design violates
the relative dimension assumptions in Fig. 1 are marked with
“N/A”.

Table VII shows the modes of each material to have
significantly varying capabilities with respect to mechanical
efficiency, volumetric energy handling density, and areal power
density. Higher FOMM is associated with higher k2 (since the
same Qm is assumed for all modes of the same material), and
particularly high FOMM s are shown for LiNbO3 shear modes.
Most vibration modes have loss-limited power densities as in-
dicated by FOMAPD tracking FOMM given the assumed areal
loss density limit. Perpendicular vibration modes tend to have
higher FOMV ED compared to parallel modes, which implies
that perpendicular modes are capable of higher volumetric
power densities for a given frequency. Also worth noting is
that some modes would have to operate at more than an order
of magnitude higher frequency than others to achieve the same
volumetric power density.

Differences in geometry requirements are further high-
lighted by Ĝ and the displayed theoretical designs. LiNbO3

generally requires an order of magnitude higher Ĝ than PZT,
resulting in more planar-shaped geometries that often require
more footprint area and/or higher operating frequencies for
similar density. Perpendicular modes likewise require more
extreme planar shapes for the same Ĝ compared to par-



TABLE VII
VIBRATION MODE COMPARISON FOR HARD PZT [43] AND LITHIUM NIOBATE [44]

Mode
Hard PZT (PIC181) Lithium Niobate

FOMM FOMV ED

(J/m3)
FOMAPD

(W/cm2)
Ĝ* Theoretical

Design*
FOMM FOMV ED

(J/m3)
FOMAPD

(W/cm2)
Ĝ* Theoretical

Design*

Length Ext. (s) 63.4 377 63.4 264 l=240µm,
b=16mm

1.26 4.14 1.26 5190 l=390µm,
b=510mm

Length Ext. (e) 345 1930 345 395 N/A 74.0 224 74.0 4910 N/A

Thickness Shear
(side)

303 2740 302 553 l=77µm,√
A
4

=910µm
1810 7360 1810 4160 l=12µm,√

A
4

=370µm

Thickness Shear
(end)

338 3210 337 581 l=71µm,
b=10mm

2090 9110 2090 4440 l=10µm,
b=12mm

Thickness
Extensional

138 631 138 330 l=150µm,√
A
4

=1.3mm
72.0 198 72.0 4450 l=56µm,√

A
4

=1.9mm

Contour
Extensional

229 13200 33.0* 302 l=36µm,
a=2.8mm

3.14 12900* 3.14 5090 l=7µm,
a=8.9mm

Radial 223 15600 52.8* 230 l=34µm,
a=2.5mm

3.12 10200* 3.12 4030 l=8µm,
a=10mm

*Assuming an example operating point of Vin=100V and Pout=10W. At this operating point, power density is E-field-limited only for PZT contour ext. and radial modes.

allel modes (as described in Section IV(b), parallel modes
have the advantage that the length dimensions comprising
Ĝ are squared). This is less pronounced at lower Ĝ values
but more exaggerated for higher Ĝ, making parallel modes
more footprint-effective for high power applications. As Ĝ
approaches infinity, all modes besides length extensional (end
electrodes) are capable of designs that meet the relative dimen-
sion assumptions in Fig. 1. As Ĝ approaches zero, the set of
compatible modes reduces to just the two length extensional
modes and thickness shear (end electrodes) mode.

Thus, the most appropriate piezoelectric materials and vi-
bration modes depend heavily on the target application space.
In addition to PZT and LiNbO3, there are numerous other
piezoelectric materials that may be similarly evaluated for
power conversion using these FOMs.

VII. FIGURE OF MERIT VALIDATION

To evaluate their utility, we now validate the FOMs derived
herein with numerically-obtained periodic steady state solu-
tions (PSSS) of converter behavior and experimental results.

A. Periodic Steady State Solution
The switching sequence described in Section III(a) is as-

sumed to operate in periodic steady state, which implies that
the PR’s states cycle through the same trajectories every
switching cycle. As described in [5], we can quantify these
trajectories in a PSSS, which varies based on circuit model
parameters and operating point (Vin, Vout, and Pout). An
“exact” PSSS (i.e., considering R in Fig. 3) can obtained
by numerically solving the set of differential equations that
govern the PR’s states during each stage of a switching
sequence. A PSSS has no dependence on the amplitude of
resonance model or other derivations herein.

With an exact PSSS, we can extract useful information
from the PR’s state trajectories like loss and output power
for validating the derived FOMs. As such, we first validate
the minimum loss ratio and maximum power densities with

PSSS data based on geometry and material data for 572
APC International discrete PR parts listed on [45]; these parts
consist of round and rectangular PRs of varying dimensions,
spanning nine total materials. For each part, we:

1) Calculate its circuit model parameters (as shown in Table
III) for a given vibration mode.

2) Based on its dimensions, determine Vin and Pout corre-
sponding to its minimum loss ratio and maximum energy
handling density using (17) and (25), assuming ILmax to
be limited by an areal loss density of 1 W/cm2.

3) For this operating point, solve for the exact PSSS of the
PR’s states as detailed in [5], constraining the converter
switching sequence for the high-efficiency behaviors cor-
responding to (6) and Vout = 0.55Vin (IL is predicted to
be independent of Vout for Vin > Vout >

1
2Vin).

4) Extract Pout from the PSSS by integrating the PR’s iL
trajectory during load-connected stages and then mul-
tiplying by Vout · f . Extract Ploss from the PSSS by
integrating the square of the PR’s iL trajectory during
all stages and then multiplying by R · f .

Ultimately, all discrete parts of the same material yield the
same minimum loss ratio, maximum energy handling density,
and maximum areal power density for a given vibration
mode; these quantities translate directly to FOMM , FOMV ED,
and FOMAPD, respectively. In Table VIII, PSSS-calculated
results for the length extensional mode (end electrodes) are
compared with their derived estimates and demonstrate very
small error for all low-loss-ratio materials. Accordingly, the
PSSS validates the following:
• FOMM ,

(
Ploss
Pout

)
min

, Ĝ, and κ̄o.
• FOMV ED, FOMAPD, and l̂.
• The independence of κ̄o,

(
Ploss
Pout

)
min

,
(
Eout

vol

)
max

,(
Pout
As

)
max

, and Ploss
As

from PR geometry and operating
point information.

• The dependence of Eout
vol , PoutAs

, and Ploss
As

on normalized
amplitude of resonance ILo.



TABLE VIII
PSSS FIGURE OF MERIT VALIDATION

Material Qm k33 κo vs. (21)
(radians)

Ploss
Pout

vs. 1
FOMM

Eout
vol vs. FOMV ED

(J/m3)

Pout
As

vs. FOMAPD

(W/cm2)

Ploss
As

vs. 1.00
(W/cm2)

840 500 0.72 1.371 | 1.364 .0102 | .0102 429.6 | 432.3 97.97 | 98.07 1.002

841 1400 0.68 1.389 | 1.385 .0041 | .0041 1073 | 1079 241.0 | 241.9 0.9912

842 600 0.71* 1.373 | 1.366 .0086 | .0086 499.3 | 502.0 116.3 | 116.3 1.001

844 1500 0.65* 1.404 | 1.405 .0043 | .0044 1009 | 1009 228.6 | 228.6 .9940

840-844 Average Error: 0.31 % 0.37% 0.45 % 0.13 % 0.43 %

880 1000 0.62 1.433 | 1.436 .0083 | .0083 523.2 | 523.7 119.5 | 120.0 .9939

881 1000 0.73* 1.360 | 1.350 .0047 | .0047 906.4 | 910.4 213.6 | 212.9 1.002

880-881 Average Error: 0.50 % 0.20% 0.26 % 0.33 % 0.39 %

Not shown: Soft PZT materials 850, 851, and 855 have loss ratios up to 0.069, with an average error (compared to (18)) of up to 6%. These materials have
significantly more loss than hard PZT and are therefore less conducive to power conversion. (*) Calculated using k233 = Y E33d

2
33/ε

T
33.

1553 2040
1105

790 1268

1817

Fig. 9. PRs tested for experimental FOM validation. The wire attachment
location is marked with a red dot for each PR. Parts 790 and 1817 are mounted
in an upright position on the board of Fig. 10 with two wires mechanically
supporting the PR as in [5]. All other PRs are positioned horizontally with
the bottom electrode making contact with the copper ribbon and the other
attached with a non-rigid wire.

PSSS results for all other vibration modes demonstrate
similar alignment as shown in Appendix C. Thus, FOMM ,
FOMV ED, and FOMAPD serve as representative metrics for
comparing the capabilities of low-loss piezoelectric materials.

B. Experimental Results

We further validate the mechanical efficiency FOM exper-
imentally using six of the PR parts considered in Section
VII. These PRs consist of APC International’s highest-FOMM

materials (841, 844, 880, and 881) in different shapes and
sizes as pictured in Fig. 9. These parts are selected to be low
in frequency (< 600 kHz) to minimize frequency-dependent
loss and potential damping effects due to mounting during
validation. With each PR, we perform the following:

1) Plot the PR’s impedance characteristic (i.e., Fig. 2) for a
given vibration mode using an impedance analyzer.

2) Estimate Qm, k, and Cp based on the impedance char-
acteristic, as detailed in Appendix D.

3) Calculate the minimum loss ratio for the estimated Qm
and k using (18). Calculate the minimum-loss-ratio Pout
using (17), assuming Vin = 100 V and charge-equivalent
switch capacitances of 250 pF (requiring 500 pF total to
be added to Cp) [46].

PR pads

S1 & S2 S3 & S4

Fig. 10. Experimental prototype board, re-purposed from [5]. All switches
are EPC 2019 GaN FETs, driven with Texas Instruments UCC27611 gate
drivers. An isolated supply powers the gate circuitry for S1 and S2.

4) Run the PR in the prototype converter shown in Fig.
10 with the Vin-Vout, Zero, Vout switching sequence,
constrained for the high-efficiency behaviors assumed in
Section III(a). This prototype and switching sequence
have the topology and waveforms of Fig. 4 and 5,
respectively. Vin = 100 V and Vout = 60 V, implemented
with a constant-voltage load. All switching times are
feed-forward and manually tuned; for a given Vin, Vin,
and Pout, there is a unique tuning point that satisfies the
assumptions of Section III.

5) Sweep through multiple power levels surrounding the
calculated Pout to identify the minimum loss ratio and
corresponding Pin, Pout, and f , maintaining the same
Vin and Vout and re-tuning switching times as needed
for the high-efficiency behaviors assumed in Section III.

The results of these experiments, along with material,
vibration mode, and frequency information for each PR, are
displayed in Table IX. The estimated PR loss ratio (or 1

FOMM
)

tracks the trend of the experimental whole-converter loss
ratio as visualized in Fig. 11, albeit a slight underestimation.
Sources for the observed discrepancies include other circuit



TABLE IX
EXPERIMENTAL FIGURE OF MERIT VALIDATION

Part
No.

Material Vibration
Mode

Qm k Cp
(nF)

f vs. (20)
(kHz)

Pout vs. (17)
(W)

Ploss
Pout

vs. 1
FOMM

(PR only)
Efficiency

1817 841 Length Ext. (s) 700 .32 .993 56.8 | 56.7 0.59 | 0.85 .0559 | .0503 94.7 %

1105 841 Thickness Ext. 2500 .31 .602 605 | 596 4.0 | 6.6 .0221 | .0156 97.8 %

2040 880 Contour Ext. 1600 .52 1.64 81.1 | 80.9 1.6 | 1.7 .0101 | .0069 99.0 %

1553 841 Radial 1700 .58 1.50 80.9 | 80.9 1.6 | 1.6 .0080 | .0049 99.2 %

790 844 Radial 1400 .55 3.53 124 | 122 4.1 | 4.9 .0090 | .0069 99.1 %

1268 881 Radial 1600 .52 .643 129 | 129 1.3 | 1.5 .0088 | .0072 99.1 %

In this table, Qm, k, and Cp are obtained by PR characterization. (20), (17), and 1
FOMM

are calculated using these characterized quantities along with characterized fr and

far and other manufacturer-provided material properties. f , Pout,
Ploss
Pout

, and efficiency are measured during operation of the converter prototype at its minimum loss ratio.

1817 1105 2040 1553 790 1268
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Fig. 11. Experimental (whole-converter) minimum loss ratio compared to
1

FOMM
for the PRs of Fig. 9, operated in the converter prototype of Fig. 10.

losses (e.g., switch loss), as well as differences between the
PR’s small-signal (as characterized) and large-signal (as tested)
characteristics. Thus, (18) provides a close approximation of
the loss ratio to be expected by a given material and vibration
mode, validating the utility of FOMM .

VIII. FUNDAMENTAL SCALING PROPERTIES

PRs have been previously suggested to have advantageous
power density and efficiency scaling properties compared
to magnetics [4]. Equipped with our FOM derivations, we
explore how PR capabilities scale with size for the realistic
converter operation assumed for this work.

If a PR is scaled in all three dimensions by linear scaling
factor α as postulated for magnetics in [2], its volume scales by
α3. In the case of a PR with fixed ILo, maximum volumetric
power density scales inversely with α as does operating
frequency, both due to Gf . However, the minimum loss
ratio, the maximum volumetric energy handling density, the
maximum areal power density, and the areal loss density have
no geometry dependence and therefore remain fixed regardless
of α. Table X summarizes these characteristics.

Thus, as volume is scaled downward (α < 1), maximum
volumetric power density increases while minimum loss ratio
(and therefore maximum efficiency) stays constant. These are
favorable scaling properties for converter miniaturization.

TABLE X
PIEZOELECTRIC RESONATOR SCALING PROPERTIES

Property Geometry Dependence Scaling (fixed ILo)

(Pout
vol

) (23) Gf α−1

(Eout
vol

)max (26) none constant

(Pout
As

)max (30) none constant

(Ploss
Pout

)min (18) none constant
Ploss
As

(10) none constant

f (3) Gf α−1

IX. CONCLUSIONS

To evaluate piezoelectric materials and vibration modes
for power conversion, we have established FOMs for achiev-
able efficiency (FOMM ), volumetric energy handling density
(FOMV ED), and areal power density (FOMAPD) based on
realistic PR utilization in a converter. These FOMs depend
on only material properties and areal loss density limits (if
considered), and they correspond to PR geometry conditions
Ĝ and l̂ for realizing both maximum efficiency and maximum
power density in a PR design.

The derived FOMM depends on only k2 and Qm, and its
corresponding geometry condition Ĝ dictates the relative PR
dimensions corresponding to maximum efficiency for a given
operating point. Parallel modes are particularly advantageous
for satisfying Ĝ with less-extreme planar shapes. Which
vibration modes are compatible with a given operating space is
likewise dictated by Ĝ, favoring vibration modes with l as their
smallest dimensions for most realistic converter applications.
Further, the operating frequency at which maximum efficiency
occurs is found to be the geometric mean of the PR’s resonant
and anti-resonant frequencies for the assumed operation.

The derived FOMV ED and FOMAPD are constrained by the
PR’s geometry-normalized amplitude of resonance ILmaxo,
which can be calculated based on material limits or an accept-
able areal loss density. FOMV ED is normalized to frequency,
which permits direct comparison between vibration modes
for a given converter switching and control requirement.
FOMAPD provides insight into footprint requirements for
planar-shaped PRs, though the utility of this FOM depends
on whether its assumed area corresponds to the footprint area
of a given PR configuration; some modes require scaling by



a multiple of 1

Ĝ
for a representative footprint density. Both of

these FOMs have the same geometry condition l̂ for maximum
power density at a given operating point.

We illustrate the utility of the proposed FOMs to compare
the capabilities of 30 PZT-based materials and seven PR
vibration modes for PZT and lithium niobate. These materials
and vibration modes vary immensely with respect to the
FOMs, though higher FOMM often enables higher power
densities for realistic areal loss density limits. With the same
Qm assumed for each mode, the shear modes demonstrate the
highest FOMM , particularly for lithium niobate. Perpendicular
modes are generally capable of higher FOMV ED but tend to
be more planar, requiring more footprint area than parallel
modes to satisfy Ĝ. Lithium niobate also necessitates more
extreme planar dimensions than PZT to meet Ĝ, requiring
more footprint area and/or higher frequency for the same
volumetric power density.

We validate these FOMs and their geometry conditions
using a periodic steady state numerical solver and experimen-
tal results with commercially-available PTs. All PRs of the
same material and vibration mode yield the same minimum
loss ratio, maximum energy handling density, and maximum
areal power density for a given areal loss density, validating
the independence of these quantities from PR geometry and
operating point information. The proposed FOMs are demon-
strated to be highly representative metrics for the achievable
efficiencies and power densities of piezoelectric materials and
vibration modes, and their corresponding geometry conditions
are verified to facilitate both maximum efficiency and max-
imum power density in a PR design. Further, the displayed
FOM values throughout this work attest to the aptitude of
piezoelectrics for power conversion in terms of efficiency and
power density capabilities, which are shown to scale favorably
for converter miniaturization.
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APPENDIX A
PIEZOELECTRIC RESONATOR WAVE SOLUTION

In this Appendix, we derive the PR’s acoustic wave solution
for each vibration mode. Piezoelectric materials are governed
by the constitutive relations in (1)-(2) and equation of motion

∇ ·T = ρü, (32)

along with strain-displacement definition S = 1
2 (∇u + u∇)

and Gauss’s Law ∇ · D = 0. Together, these equations
determine the behavior of the PR states, which varies by
vibration mode.

−l l

∝|u|

∝|T |

∝|S|

∝|E|

x

(a)

−a a

∝|u|

∝|T |
∝|S|

∝|E|
x

(b)

Fig. 12. Relative amplitudes of u, S, T , and E along the axis of Gf in a PR
for (a) vibration modes in which the applied and induced E fields are parallel
(||) and (b) vibration modes in which the applied and induced E fields are
perpendicular (+).

TABLE XI
PARAMETERS FOR EACH VIBRATION MODE [29]

Mode va d sE εT k

Length Ext.
(s)

√
1

ρsE11
d31 sE11 εT33 k31= d31√

sE11ε
T
33

Length Ext.
(e)

√
1

ρsD33
d33 sE33 εT33 k33= d33√

sE33ε
T
33

Thickness
shear (side)

√
1

ρsD55
d15 sE55 εT11 k15= d15√

sE55ε
T
11

Thickness
shear (end)

√
1

ρsE55
d15 sE55 εT11 k15= d15√

sE55ε
T
11

Thickness
Extensional

√
cD33
ρ

** ** ** kt= e33√
cD33ε

S
33

Contour
Extensional

√
1

ρsE11(1−σ2)
d31 sE11 εT33 kp=

√
2k231
1−σ

Radial
√

1
ρsE11(1−σ2)

d31 sE11 εT33 kp=

√
2k231
1−σ

Measurement condition conversions [29]:
εS11 = (1− k215)εT11 εS33 = (1− k233)εT33 sD11 = (1− k231)sE11
sD33 = (1− k233)sE33 sD55 = (1− k215)sE55 cE33 = (1− k2t )cD33

**Thickness extensional mode is commonly represented by e33, cE33, and εS33.

A. One-Dimensional Stress/Strain Modes

Most vibration modes considered (length extensional, thick-
ness shear, and thickness extensional) can be modeled by one-
dimensional stress/strain (i.e., we consider only one tensor
component for each PR state in (1)-(2), (32)). For this case,
the coupled constitutive relations take the reduced form:

S = sET + dE (33)

D = dT + εTE (34)

To illustrate the PR behaviors for each vibration mode, we
adopt a generalized notation for all parameters without indices;
the tensor components pertinent to each vibration mode (using
Voigt notation) are displayed in Table XI. We likewise refer to
a location along the l-dimension axis for parallel modes and
a-dimension axis for perpendicular modes as generally “x”.

With the equation of motion (32), (33)-(34) create an
acoustic wave equation for mechanical displacement u:

∂2u

∂t2
= v2

a
∂2u

∂x2
(35)



TABLE XII
ONE-DIMENSIONAL VIBRATION MODE DERIVATIONS

Length Ext. (s) and Thickness Shear (e) Length Ext. (e) and Thickness Shear (s) Thickness Extensional

S κ∆ cos(κx)ejωt κ∆ cos(κx)ejωt κ∆ cos(κx)ejωt

T 1
sE
κ∆ (cos(κx)− cos(κo)) ejωt

1
sD
κ∆ (cos(κx)− cos(κo)) ejωt cDκ∆ (cos(κx)− cos(κo)) ejωt

E κ∆
d

(cos(κo)) ejωt
κ∆

d(1−k2)

(
−k2 cos(κx) + cos(κo)

)
ejωt cDκ∆

e(1−k2)

(
−k2 cos(κx) + cos(κo)

)
ejωt

IL κAGf
vad
sE

∆ sin(κo) κAGf
vad
sE

∆ sin(κo) κAGfvae∆ sin(κo)

∆S
1
κ
Smax

1
κ
Smax

1
κ
Smax

∆T
sE

κ
1

1−cos(κo)
Tmax

sD

κ
1

1−cos(κo)
Tmax

1
cDκ

1
1−cos(κo)

Tmax

∆E
d
κ

1
cos(κo)

Emax
d
κ

(1−k2)

(cos(κo)−k2)
Emax

e
cDκ

1
(cos(κo)−k2)

Emax

ILmaxS AGf
vad
sE

Smax sin(κo) AGf evaSmax sin(κo) AGf
vad
sE

Smax sin(κo)

ILmaxT AGfvadTmax cot(κo
2

) AGfvad(1− k2)Tmax cot(κo
2

) AGfva
e
cD
Tmax cot(κo

2
)

ILmaxE AGfk
2εT vaEmax tan(κo) AGfk

2εSvaEmax
sin(κo)

cos(κo)−k2 AGfk
2εSvaEmax

sin(κo)

cos(κo)−k2

TABLE XIII
PLANAR VIBRATION MODE DERIVATIONS

Contour Extensional Radial

S S1 = κ∆ cos(κx1)ejωt Srr = κ
2

∆(J0(κr)− J2(κr))ejωt

S2 = κ∆ cos(κx2)ejωt Sθθ = 1
r

∆J1(κr)ejωt

T T1 = κ∆ejωt

sE11(1−σ2)

(
cos(κx1) + σ cos(κx2)− (1 + σ) cos(κo)

)
Trr = ∆ejωt

sE11(1−σ2)

(
κ
2

(
J0(κr)− J2(κr)

)
+ σ

r
J1(κr)− κΨ

)
T2 = κ∆ejωt

sE11(1−σ2)

(
σ cos(κx1) + cos(κx2)− (1 + σ) cos(κo)

)
Tθθ = ∆ejωt

sE11(1−σ2)

(
κσ
2

(
J0(κr)− J2(κr)

)
+ 1
r
J1(κr)− κΨ

)
E κ∆

d31
(cos(κo)) ejωt

κ∆
d31(1+σ)

Ψejωt

IL 2κAGf
vad31

sE11(1−σ)
∆ sin(κo) κova

2πd31
sE11(1−σ)

∆J1(κo)

∆S
1
κ
Smax

2
κ
Smax

∆T
sE11(1−σ)

κ(1−cos(κo))
Tmax

sE11(1−σ2)

κ( 1
2

(1+σ)−Ψ)
Tmax

∆E
d31
κ

1
cos(κo)

Emax
d31(1+σ)

κΨ
Emax

ILmaxS 2AGfva
d31

sE11(1−σ)
Smax sin(κo) AGf

4d31va
sE11(1−σ)

SmaxJ1(κo)

ILmaxT 2AGfvad31Tmax cot(κo
2

) AGf
2vad31(1+σ)
1
2

(1+σ)−Ψ
TmaxJ1(κo)

ILmaxE AGfvak
2
pε
T
33Emax tan(κo) AGfvak

2
pε
T
33(1 + σ)Emax

J1(κo)
Ψ

The PR is assumed to resonate in the proximity of its lowest-
frequency vibration mode for traction-free boundaries in Fig.
1. Thus, the acoustic wave solution is sinusoidal in form:

u = ∆ sin(κx)ejωt (36)

Inserting (36) into the constitutive relations and enforcing
traction-free boundaries yields the solutions for S, T , and E;
these solutions are displayed for each mode in Table XII.
Fig. 12 illustrates the relative amplitudes of u, S, T , and E.
These states retain similar spacial dependencies across x for
each vibration mode, though their specific directions may be
different. Moreover, the maximum amplitudes for S, T , and
E each occur at the center of the PR (at x = 0).

This wave solution provides means to analyze the PR’s
mechanical and electrical limits, which we utilize in Section
V and Appendix B. Also, the Butterworth-Van Dyke circuit
model (Fig. 3) can be derived from E as detailed in [29].

B. Contour Extensional Mode

For contour extensional mode, we assume the PR to be
under plane stress (i.e., we consider only the normal stress

components along the two axes perpendicular to the applied
E field). We denote these normal stresses with T1 and T2,
and their coordinate plane is defined by the red displacement
lines in Fig. 1(f) with the origin at the center of the PR. The
constitutive relations then have the form [29]:

T1 =
1

sE11(1− σ2)

(
∂u1

∂x1
+ σ

∂u2

∂x2

)
− d31

sE11(1− σ)
E (37)

T2 =
1

sE11(1− σ2)

(
σ
∂u1

∂x1
+
∂u2

∂x2

)
− d31

sE11(1− σ)
E (38)

D =
d31

sE11(1− σ)
(
∂u1

∂x1
+
∂u2

∂x2
) + εT33(1− k2

p)E (39)

With (32), these equations constitute an acoustic wave
equation for mechanical displacement u. Its solution can be
approximated by two separate waves, which we assume to be
identical along their respective dimensions [29]:

u1 = ∆ sin(κx1)ejωt (40)

u2 = ∆ sin(κx2)ejωt (41)



TABLE XIV
BESSEL FUNCTION EXPANSIONS

Function Expansion Around κo = 2

κo
J0(κo)
J1(κo)

0.776− 1.525(κo − 2)− 0.789(κo − 2)2

J0(κo) 0.224− 0.577(κo − 2)− 0.0322(κo − 2)2

J1(κo) 0.577− 0.645(κo − 2)− 0.2(κo − 2)2

J2(κo) 0.353− 0.224(κo − 2)− 0.0560(κo − 2)2

TABLE XV
CIRCUIT MODEL PARAMETERS FOR RADIAL VIBRATION MODE [29]

Parameter Radial Mode Expression

Gf
1
a

Cp εT (1− k2
p)A

2l

C
2(1+σ)

κ2
o,r−(1−σ2)

k2p
1−k2p

Cp

L 1
2G2

f
v2aCp

1−k2p
k2p

κ2
o,r−(1−σ2)

κ2
o,r(1+σ)

R 1
Qm

√
L
C

Inserting (40) and (41) into (37) and (38) and enforcing the
boundary conditions of T1 = 0 at x1 = ±a and T2 = 0 at
x2 = ±a provides the analytical solution shown in Table XIII
for the PR’s S, T , and E states. This solution follows the
relative amplitudes illustrated in Fig. 12(b).

C. Radial Mode

For the radial vibration mode, we assume only planar stress
components parallel to the electrodes; E is again applied only
in the polarization direction. This time, we adopt a cylindrical
coordinate system in which r is the radial coordinate and θ is
the hoop coordinate. Thus, the constitutive relations are [29]:

Trr =
1

sE11(1− σ2)

(
∂ur
∂r

+ σ
ur
r

)
− d31

sE11(1− σ)
E (42)

Tθθ =
1

sE11(1− σ2)

(
σ
∂ur
∂r

+
ur
r

)
− d31

sE11(1− σ)
E (43)

D =
d31

sE11(1− σ)

(
∂ur
∂r

+
ur
r

)
+ εT33(1− k2

p)E (44)

Together with the equation of motion (32), these constitute
a wave equation for mechanical displacement ur with solution

ur = ∆J1(κr)ejωt (45)

for which Jn is the Bessel function of first kind and nth order.
Inserting (45) into (42) and enforcing the boundary condition
Trr = 0 at r = a yields the analytical solution in Table XIII
for the PR’s S, T , and E states, which follows the illustration
in Fig. 12(b) for x = r. In this solution, we have substituted

Ψ =
1

2
J0(κo)−

1

2
J2(κo) +

σ

κo
J1(κo) (46)

The geometry-normalized wave numbers corresponding to
fr and far in radial mode are solutions to the following
transcendental equations, respectively [29]:

κo,r
J0(κo,r)

J1(κo,r)
= 1− σ (47)

κo,ar
J0(κo,ar)

J1(κo,ar)
= 1− σ −

k2
p

1− k2
p

(1 + σ) (48)

If needed, Bessel functions J0(κo), J1(κo), and J2(κo) can
be approximated by series expansions around κo,r; second-
order expansions around κo = 2 are shown in Table XIV.
The geometry-normalized wave number that corresponds to
the minimum-loss-ratio operating frequency is then:

κ̄o =
2κo,rκo,ar
κo,r + κo,ar

(49)

Finally, E in Table XIII can be reduced to the circuit model
of Fig. 3 with the parameters shown in Table XV.

APPENDIX B
MAXIMUM IL DERIVATION

In this Appendix, we determine the maximum permissible
IL based on limits for the PR’s S, T , and E states. To begin,
we derive the relationship between IL and the PR’s maximum
displacement amplitude (∆) using constitutive relations (1)-(2)
and our solutions in Tables XII-XIII. For a one-dimensional
vibration mode, inserting (33) into (34) yields:

D =
d

sE
∂u

∂x
+ εT

(
1− k2)E (50)

Integrating across the volume of the PR (i.e., across elec-
trode area A and distance 2l) gives:

Q = AGf
d

sE
u(G−1

f ) +
A

2l
εT
(
1− k2) vp,1 (51)

for which vp,1 is the first harmonic approximation of vp.
Finally, taking the time derivative yields:

iin = jωAGf
d

sE
u(G−1

f ) + Cp
dvp,1
dt

(52)

in which iin can be considered the current entering the PR
through its top terminal as modeled in Fig. 3. For planar
modes, this process results in a similar form as (52) for contour
extensional mode and the following form for radial mode:

iin = jωa
2πd31

sE11(1− σ)
∆J1(κo)e

jωt + Cp
dvp,1
dt

(53)

These expressions for iin correspond to Fig. 3 such that IL
equals the magnitude of the first term in (52) or (53). IL is
shown for each operating mode in Tables XII and XIII.

From here, S, T and E can each be related to IL through
∆. As shown in Fig. 12, the maximum S, T and E each occur
at x = 0, so we rearrange their respective equations in Tables
XII-XIII and focus on x = 0 to reach ∆S , ∆T , and ∆E as
functions of Smax, Tmax and Emax, respectively (Smax and
Tmax refer to the maximum principal strains and stresses for
planar modes; this requires taking the limit as r → 0 for radial
mode). Each ∆ can then be directly inserted into IL, resulting
in the strain-limited (ILmaxS), stress-limited (ILmaxT ), and
E-field-limited (ILmaxE) maximum amplitudes of resonance
displayed in Tables XII-XIII. ILmaxS , ILmaxT , and ILmaxE
all have the same geometry terms (AGf ), which allows direct
comparison of their geometry-normalized quantities.



TABLE XVI
EXTENDED FIGURE OF MERIT VALIDATION USING APC INTERNATIONAL PZT PARTS [35]

Vibration Mode Material Ploss
Pout

vs. 1
FOMM

κo vs. (21)
(radians)

Eout
vol vs. FOMV ED

(J/m3)

Pout
As

vs. FOMAPD

(W/cm2)

Ploss
As

vs. 1.00
(W/cm2)

Length Ext. (side)
840 .0602 | .0570 1.607 | 1.613 112.3 | 112.1 17.52 | 17.54 1.054
841 .0236 | .0232 1.603 | 1.608 248.5 | 247.8 43.12 | 43.13 1.018
880 .0414 | .0399 1.597 | 1.601 142.0 | 142.4 24.91 | 25.04 1.032

Thickness Shear (side)
840 .0108 | .0107 1.379 | 1.373 803.2 | 809.4 92.80 | 93.14 .9992
841 .0043 | .0044 1.395 | 1.394 1986 | 1979 230.1 | 229.1 .9984
880 .0103 | .0103 1.455 | 1.461 840.2 | 836.3 96.68 | 96.62 1.000

Thickness Shear (end)
840 .0093 | .0092 1.810 | 1.795 1004 | 1009 108.7 | 108.4 1.006
841 .0038 | .0038 1.776 | 1.769 2377 | 2396 260.2 | 261.3 .9918
880 .0096 | .0096 1.683 | 1.689 938.2 | 932.8 104.3 | 104.1 1.001

Thickness Extensional
842 .0243 | .0240 1.483 | 1.490 195.1 | 193.5 41.88 | 41.70 1.019
844 .0096 | .0096 1.483 | 1.490 485.5 | 483.6 104.2 | 104.3 .9999
881 .0160 | .0159 1.491 | 1.497 293.8 | 293.2 62.79 | 62.94 1.005

Contour Extensional
840 .0159 | .0158 1.708 | 1.712 271.8 | 272.4 62.96 | 63.22 1.001
841 .0054 | .0054 1.715 | 1.718 826.1 | 826.7 185.3 | 185.8 .9921
880 .0124 | .0123 1.658 | 1.665 362.1 | 361.2 80.99 | 81.16 1.000

Radial
840 .0163 | .0161 2.221 | 2.092 269.5 | 271.0 62.3 | 62.30 1.014
841 .0056 | .0056 2.292 | 2.276 809.5 | 811.1 180.1 | 180.1 1.008
880 .0126 | .0125 2.147 | 2.148 355.4 | 357.0 79.45 | 79.85 1.002

APPENDIX C
EXTENDED PSSS VALIDATION RESULTS

PSSS results validating the length extensional mode (end
electrodes) FOMs are shown in Table VIII. Results for all other
considered modes are displayed in Table XVI. The energy
and power density quantities are validated for all materials
based on areal loss density constraint (10), though the practical
relevance of considered area As in this calculation depends on
the specific vibration mode and mounting structure.

APPENDIX D
PR CHARACTERIZATION FOR EXPERIMENTAL VALIDATION

For experimental validation, we first characterize each PR
in order to calculate its FOMs based on physical properties.
Qm can be calculated based on the PR’s 3dB bandwidth at
resonance as measured using an impedance analyzer [29]:

Qm =
fr

BW3dB
(54)

Further, the effective k can be calculated based on the
observed resonant and anti-resonant frequencies:

keff =

√
f2
ar − f2

r

f2
ar

(55)

This enables the following mode-specific k calculations [29]:

k2
|| =

π

2

√
1− k2

eff cot(
π

2

√
1− k2

eff ) (56)

k2
+ =

1

1− 2
π

√
1− k2

eff tan(π
2

1√
1−k2

eff

)
(57)

k2
p(radial) =

(1− σ)J1(κar)− κarJ0(κar)

2J1(κar)− κarJ0(κar)
(58)

Cp and other circuit parameters can be extracted by match-
ing Fig. 3 to the impedance characteristic.
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