
Modeling Magnetics 
Introduction 

In 2015, this magazine’s cover portrayed gallium nitride (GaN) and silicon carbide (SiC) switching devices 
as super heroes, able to make “next-generation power electronics smaller, faster, and more efficient” in 
a single bound.  And indeed, they are largely doing so, in conjunction with improved components and 
integrated circuits, better packaging and more sophisticated circuit design and control.   

Despite this tremendous progress, magnetics remain an important bottleneck in power electronics.  In 
some ways, this is inevitable.  Magnetic components suffer from fundamental scaling laws that oppose 
miniaturization – a half-size magnetic component can process less than half of the power [1].  Other 
components have been more readily miniaturized by advances in materials, manufacturing, 
semiconductor devices, and operating frequencies.  Meanwhile, magnetics remain stubbornly large and 
lossy – an even greater bottleneck than before.  It is not uncommon in sophisticated, modern power 
converter designs to have approximately half of the volume and power losses arising from inductors and 
transformers.  Visualizing this trend, our colleague has portrayed magnetics as a ball-and-chain locked 
around the ankles of the GaN and SiC super heroes (Fig. 1) [2]. 

Figure 1 - The potential for advances such as GaN and SiC to elevate system-level performance is often limited by the magnetic 
components. 
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Given this increasingly severe magnetic bottleneck, it is becoming imperative to make maximum use of 
magnetic capabilities, such as achieving multiple functions from a single component (e.g., using so-called 
“integrated” magnetics [3]).  Magnetic components are relied upon to support multiple inputs/outputs 
(e.g. interfacing with a renewable energy source, a load, and a battery) [4].  They also allow the use of 
multiple voltage/current domains within a circuit to take advantage of good figure-of-merit switches at 
high frequency [5-6], advantageously spread out heat dissipation [7], or compress apparent impedance 
ranges [8].  In a great many of these cases, more functionality means more complicated magnetic 
components with more windings. 
 
It is well known that magnetic components with multiple windings do not have simple behavior, and as 
switching frequencies increase and designs become more sophisticated, the importance of these more 
complex behaviors become increasingly central.  In this article we review valuable techniques for 
modeling the magnetic behavior of inductors and (especially) multi-port components (e.g. 
transformers), highlighting each approach’s advantages in component design, circuit application, and 
experimental characterization. Here we only model the behavior of magnetic coupling and energy 
storage within a component; there are many further aspects we do not treat here, such as capacitance 
modeling [9], winding loss modeling [10,11], and core loss modeling [12], though these can often be 
treated separately and appended to the models described here. 
 

Modeling Magnetic Components 
 
There are several ways to represent magnetic components, including: 
 

1) Mathematical Representations  
2) Necessary-and-Sufficient Circuit Representations 
3) Physical Circuit Representations 

 
For all three representations, single-winding structures (inductors) reduce to the same thing – a single 
inductance 𝐿𝐿 represents the entire structure.  The differences become more clear when a second 
winding is added to form a transformer.  Here, the transformer can be represented by a set of coupled 
equations: 
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where the inductance matrix comprises the mathematical representation.  This representation fully 
captures the effect of inductive coupling among multiple electrical ports.  By reciprocity [13], an 
inductance matrix must be symmetric, with 𝐿𝐿𝑚𝑚𝑚𝑚 = 𝐿𝐿𝑚𝑚𝑚𝑚, which means there are 𝑀𝑀(𝑀𝑀 + 1)/2 
independent parameters in an M-winding structure.  While independent, these parameters are 
nonetheless bound by the limitations of physics.  For example, by conservation of energy, the 
inductance matrix must be positive semidefinite, yielding  𝐿𝐿11 ≥ 0, 𝐿𝐿22 ≥ 0, and |𝐿𝐿12| ≤ �𝐿𝐿11𝐿𝐿22  in the 
two-port case.   
 
While the inductance matrix is a useful mathematical description, it is not conducive to circuit analysis 
and design or to synthesis of magnetic components.  To this end, the inductance matrix can also be 
represented by a “necessary-and-sufficient” equivalent circuit composed of inductors and ideal 



transformers.  We call such models necessary and sufficient because they have the exact number of 
independent parameters needed to represent a magnetic structure.  For a two-winding transformer, 
necessary-and-sufficient models can be constructed with each of the T model, the Pi model, and the 
Cantilever model (Fig. 2).  These circuits will yield identical results to each other and to the mathematical 
representation.   
 
Perhaps the most familiar of these is the T model, though it is more typically shown with inductor 𝐿𝐿𝐶𝐶  
reflected through the transformer to the secondary side (with an appropriate scaling of the inductance 
value).  Defining the turns ratio 𝑁𝑁1/𝑁𝑁2 = 𝑁𝑁, it is straightforward to show that the inductance matrix 
description can be related to the circuit model parameters as follows:  𝐿𝐿11 = 𝐿𝐿𝐴𝐴 + 𝐿𝐿𝐶𝐶, 𝐿𝐿22 = (𝐿𝐿𝐵𝐵 +
𝐿𝐿𝐶𝐶)/𝑁𝑁2, and 𝐿𝐿12 = 𝐿𝐿21 = 𝐿𝐿𝐶𝐶/𝑁𝑁 and the inverse 𝐿𝐿𝐴𝐴 = 𝐿𝐿11 − 𝑁𝑁𝐿𝐿12, 𝐿𝐿𝐵𝐵 = 𝑁𝑁2𝐿𝐿22 − 𝑁𝑁𝐿𝐿12, and 𝐿𝐿𝐶𝐶 =
𝑁𝑁𝐿𝐿12.   
 
It can be seen that – including the turns ratio 𝑁𝑁 – the T model actually has four parameters that can be 
used to fit the three free parameters of the inductance matrix.  One is not constrained to choose 𝑁𝑁 to 
be the physical turns ratio of the transformer, and sometimes the physical turns ratio is not known.  A 
frequent non-physical choice for 𝑁𝑁 is 1, which results in very simple relationships between the 
remaining three parameters (the inductances) and the inductance matrix:   𝐿𝐿𝐴𝐴 = 𝐿𝐿11 − 𝐿𝐿12, 𝐿𝐿𝐵𝐵 = 𝐿𝐿22 −
𝐿𝐿12, and 𝐿𝐿𝐶𝐶 = 𝐿𝐿12 .  Such a model can yield negative inductance values (as long as conservation of 
energy is obeyed, as noted above) which can actually be useful in circuit design [14]. 
 
In the more common case where 𝑁𝑁 is selected as the physical turns ratio of the transformer, the 
inductances have physical meaning,1 namely as the primary-side leakage inductance 𝐿𝐿𝐴𝐴 = 𝐿𝐿𝑙𝑙1 
(representing flux that only couples the primary), the primary-referred magnetizing inductance 𝐿𝐿𝐶𝐶 = 𝐿𝐿𝜇𝜇1 
(representing flux that couples both windings), and the primary-referred secondary-side leakage 
inductance 𝐿𝐿𝐵𝐵 = 𝑁𝑁2𝐿𝐿𝑙𝑙2 (representing flux that only couples the secondary; more typically 𝐿𝐿𝐵𝐵 is reflected 
to the secondary side, forming the secondary-side leakage inductance 𝐿𝐿𝑙𝑙2 = 𝐿𝐿𝐵𝐵/ 𝑁𝑁2).   
 
Turning to the Pi model of the transformer, we can likewise see that there are 4 possible parameters, 
which can be selectively narrowed to three parameters to realize a necessary and sufficient model for 
any two-port magnetic component.  One way to approach this is to recognize that the Pi model of Fig. 2 
can be directly synthesized from the T model by using a Y-∆ transform [15] to convert its inductor 
network from a T (Y) to an equivalent Pi (∆) configuration.   
 
The cantilever model of Fig. 2 – so named by its originators because the configuration of the two 
inductors in the circuit resembles a cantilever [16] – provides exactly the three independent parameters 
needed to represent a two-port magnetic structure: two inductors (𝐿𝐿𝐺𝐺 and 𝐿𝐿𝐻𝐻) and a non-physical turns 
ratio2.    The cantilever model can be understood as the T model with one series inductance constrained 
to be zero or as the Pi model with one shunt inductance constrained to be infinitely large.  This model is 
particularly suitable for use in circuit design, as it makes explicit only two energy storage elements, 
making its behavior easier to visualize than a model including three inductors.  However, since none of 

                                                           
1 Strictly speaking, the above description only applies when flux linking any turn of a given winding links all the turns of that 
winding, such that there is no flux leakage among turns  – otherwise it is merely an approximate physical understanding. Flux 
leakage within a winding is one reason, along with various numerical and measurement issues, that “physical” leakage 
inductances are sometimes concluded to be negative from experiments. 
2 If the primary or secondary leakage is very small, a cantilever model may be constructed with 𝑛𝑛 approximately equal to the 
physical turns ratio.  In physical windings, however, there is always some leakage flux. 



the three parameters has direct physical meaning, it can be difficult to synthesize a magnetic 
component with the desired parameters. 
 
 

 

 
Figure 2 - Three common circuit structures for modeling two-winding transformers.  These models can be made mathematically 
equivalent to each other and to the inductance matrix. 

 
 
 

------------------------------------------------------------------------------------------------ 

Side box  -- Different “types” of transformers 
 

All N-winding magnetic structures based on electromagnetic induction may be modeled in the same 
way.  Nevertheless, it is common to see them referred to by their intended application – flyback 
transformers, forward transformers, current transformers, Rogowski coils, voltage transformers, 
common-mode chokes, coupled inductors, sense windings (on inductors), gate-drive transformers, low-
/medium-/high-frequency transformers, autotransformers, pulse transformers, variacs, etc.  This varied 
terminology sometimes gives the impression that there is a great variety of physical principles at work, 
which is not the case.  It is important to emphasize that the varied transformer nomenclature refers to a 
variety of use cases (and hence design goals), not to any distinction in magnetic physics.  (While there 
are electromagnetic components – such as circulators – that incorporate other physical principles, 
nearly all magnetic components used by power electronics engineers operate based on Faraday’s law of 



electromagnetic induction.)  No matter one’s choice of terminology, the approaches in this article apply 
to all such magnetic devices.   
 
For example, a forward transformer is so called because it has been optimized for use in a forward 
converter, where all of the inductances in the T model are considered parasitic.  It is therefore often 
designed with no core gap and tight coupling between the windings to yield large magnetizing (𝐿𝐿𝐶𝐶) and 
small leakage inductances (𝐿𝐿𝐴𝐴, 𝐿𝐿𝐵𝐵).  By contrast, the magnetizing inductance (𝐿𝐿𝐶𝐶) in a flyback converter 
is not parasitic; it plays a direct role in the intended operation of the converter and is expected to store 
a substantial amount of energy.  A flyback transformer is therefore designed with a gap in the core.   
 
Other good examples include instrumentation transformers.  A current transformer is typically designed 
with a single-turn primary and a small resistive burden on the secondary.  In this case, the user assumes 
that nearly all of the primary current flows through the ideal transformer in the T model.  A 
corresponding current flows through the burden resistor to create a sense voltage which is proportional 
to and in phase with the sensed current.  The magnetizing inductance (𝐿𝐿𝐶𝐶) and secondary leakage 
inductance (𝐿𝐿𝐵𝐵) are therefore considered parasitic and current transformer designs seek to maximize 𝐿𝐿𝐶𝐶   
and minimize 𝐿𝐿𝐵𝐵.  By contrast, a Rogowski coil is also used to sense current, but a well-designed 
Rogowski coil is meant to be used with a high-impedance secondary load with all of the primary current 
flowing through the magnetizing inductance (𝐿𝐿𝐶𝐶).  The magnetizing inductance is not parasitic in this 
case, and is carefully optimized to create a large signal while inserting a small impedance on the sensed 
system.  Thus, while current transformers are typically designed with high-permeability magnetic cores, 
Rogowski coils often use no core at all. 
 
Further examples abound, including transformers that intentionally utilize leakage inductance (e.g. in 
dual-active-bridge converters) and transformers that intentionally use both leakage and magnetizing 
inductance (e.g. in LLC resonant converters).    Nevertheless, the same physics, analysis, 
characterization, and intuition apply equally well to all cases.  Therefore, while there is value in specific 
nomenclature, it is useful to appreciate the unity of the principles that underly all such magnetic devices 
and the ability to model them in the same way. 
 
 
(END OF SIDE BOX) 
------------------------------------------------------------------------------------------------- 
 
 
 
Indeed, excepting the T model with 𝑁𝑁 chosen as the physical turns ratio, the models of Fig. 2 tend to be 
more mathematical than physical in how they represent a magnetic component.  One can, however, 
develop circuit models that directly represent the physical flux paths of a magnetic structure.   This can 
be accomplished by forming a magnetic circuit model (including key flux paths and reluctances) and 
converting it into its corresponding electrical circuit.  This process can also be reversed, starting from a 
desired electrical circuit model of a magnetic component, converting it into an equivalent magnetic 
circuit, and from there synthesizing a magnetic structure with similar flux paths and reluctances.  This 
procedure is not novel (see e.g. [17,3]), but despite its usefulness the authors rarely see it used and it 
bears additional emphasis.   
 
To illustrate the physical modeling procedure, we consider an example magnetic structure in Fig. 3.  
Drawing the relevant flux paths and reluctances yields a magnetic circuit at the top of Fig. 4 with the 



across variable being MMF (ampere-turns) and the through variable being flux (volt-seconds/turn)3.  
Taking its topological dual yields a circuit with flux as the across variable, MMF as the through variable, 
and a set of permeances (units Henries, the magnetic analog of conductance).  Differentiating the circuit 
makes the across variable 𝑑𝑑ϕ/𝑑𝑑𝑑𝑑 and through variable 𝑁𝑁 𝑑𝑑𝑖𝑖/𝑑𝑑𝑑𝑑, but the relationships represented by 
the circuit remain true.   
 
Now, we can pass the role of differentiation from the through variable to the permeances, replacing the 
through variable with 𝑁𝑁𝑁𝑁 and the permeances (which enforce the ratio 𝒫𝒫 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
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account for the source turns ratios completes the conversion, with the outer variables becoming 
electrical volts and amperes.  The inner structure is usually reflected to the outside, and the 
transformers are usually combined – we leave the example in “unfinished” form to highlight the 
electrical domain coupling into the magnetic domain.   
 
 
 
 

 
Figure 3 – A two-winding magnetic structure example, used in Fig. 4 to demonstrate the conversion from a magnetic circuit 
model to an equivalent electric circuit. 

 

                                                           
3 In the reluctance model, the product of across variable (MMF) and through variable (flux) has units of energy, not power as in 
electric, mechanical, fluid, or thermal systems.  In addition, “dissipation” in the magnetic circuit domain corresponds to energy 
storage in the electric circuit domain (and, while we do not treat it here, vice versa [18].)  This inconsistency with the models of 
virtually every other physical system is sometimes seen as a theoretical embarrassment of the reluctance model, and more 
satisfying models have been proposed to replace it [19].  Nevertheless, the reluctance model’s ease of use has made it the clear 
favorite in the field. 

 



 
Figure 4 – Magnetic circuits can be converted into electric equivalent circuits through topological duality (and vice versa).  This 
physical modeling approach can be used to analyze existing structures or synthesize a structure with some desired functionality, 
but it is not guaranteed to have the number of independent parameters required by the inductance matrix.   

 
It can be seen in Fig. 4 that the magnetic circuit and its “direct equivalent” electric circuit are topological 
duals [17,3].  Thus, these steps can be used to convert between the electric and magnetic domain for 
the same component.  Note that, while we belabor the details for completeness, in practice the 
transformation is often easily drawn by inspection. 
 
In this example, the physical model reduced to a well-known necessary-and-sufficient representation 
(the Pi model with a physical turns ratio), but there is no guarantee that it would have.  A magnetic 
circuit can include reluctance paths at many levels of granularity, producing just as many inductances in 
the electric equivalent circuit.  The limit of an ultra-fine-grained reluctance model is similar in essence to 
a finite-element simulation.  A magnetic circuit could also include fewer reluctances than a necessary-
and-sufficient model, resulting in a reduced-order electric circuit.  Because the identification of relevant 
reluctance paths is an unconstrained choice, the final result may be under- or over-determined (with 
respect to the 𝑀𝑀(𝑀𝑀 + 1)/2 independent parameters for describing port relationships) and therefore 
will only match reality to the extent that the original magnetic circuit captures the right amount of 
information.   
 
Physical modeling of magnetics is most useful in design.  If we want some functionality in a circuit, we 
can reverse the above process to obtain a magnetic circuit and then synthesize an actual component.  
However, physical models can be less useful in characterizing an existing device, especially for the likely 
case of an under- or over-defined model.  For example, consider the complicated structure of Fig. 5 with 



many relevant flux paths.   With physical modeling, the analysis is straightforward, even considering the 
flux that links only some turns of each winding (e.g. by modeling each turn as a separate winding, 
electrically connected in series).4  However, the 12 reluctances in the model of Fig. 5 is more than the 
number of parameters in a two-port or even a four-port inductance matrix (three and ten respectively).  
Therefore, given a prototype of this structure, it is impossible to determine the values of all 12 
equivalent circuit inductances by experimentally testing the electrical port behavior, though such tests 
can determine the values of an inductance matrix or necessary-and-sufficient circuit model.   
Conversely, if the physical model had too few reluctances/inductors in it to capture the actual flux paths 
in a practical device, then the resulting circuit model (and any inductance matrix derived from it) would 
not well represent the behavior of the practical device.   
 
This case shows that the translation between physical and necessary-and-sufficient models can be 
difficult and the advantages of each approach become more apparent.  On paper, physical modeling is 
the easiest way to understand a structure.  Given a physical prototype, experimentally characterizing the 
component in terms of inductance matrix or necessary-and-sufficient circuit parameters/model is much 
more straightforward. 
 

 
Figure 5 - A bizarre magnetic structure which is difficult to analyze without a many-parameter physical model.  While 
mathematically such a model must reduce to the three independent parameters of the inductance matrix (equivalently, a 
necessary-and-sufficient circuit model), such a reduction is not always straightforward.   

 
 
 

                                                           
4 Flux linking only some turns in a winding can be important to model, e.g. to understand the direction and magnitude of B 
fields within the structure, to capture un-even distribution of voltage on a winding, etc. 



Modeling with Three Windings 
 
Moving to three windings changes the modeling landscape substantially.  While the mathematical and 
physical representations extend naturally to 𝑀𝑀 windings, most necessary-and-sufficient circuit 
representations do not extend so cleanly [20].  The primary exception, and perhaps the most-used of 
such models is the Extended Cantilever Model [21].  In this model, an 𝑀𝑀-port magnetic structure is 
represented by a set of 𝑀𝑀 nodes with an inductance connecting each of them to each other, yielding 
𝑀𝑀(𝑀𝑀 − 1)/2 parameters.  Each winding couples to one of the 𝑀𝑀 nodes, with the primary having a shunt 
inductance and a 1:1 turns ratio, and every other turns ratio being an independent variable. This yields 
𝑀𝑀 more parameters, for a correct total of 𝑀𝑀(𝑀𝑀 + 1)/2.  This model extends naturally to 𝑀𝑀 windings, 
and any apparent complexity in the model results from the fact that port relationships of magnetic 
structures simply become quadratically more complicated as a function of 𝑀𝑀. 
 
 

 
Figure 6 - The Extended Cantilever Model, a necessary-and-sufficient model, for a three-winding structure.  This model extends 
naturally to 𝑀𝑀 ports and 𝑀𝑀(𝑀𝑀 + 1)/2 parameters.  Moreover, each parameter can be measured without performing 
numerically sensitive calculations, though some of the measurements require current sensing which can be challenging at 
elevated frequencies. 

 
Identifying the 𝑀𝑀(𝑀𝑀 + 1)/2 parameters in any necessary-and-sufficient representation is typically done 
experimentally, either through experiments on a practical device or through numerical simulations of a 
model of the device.  The recommended measurements for the Extended Cantilever Model are shown in 
Table 1, with open-circuit measurements used to find the magnetizing inductance and non-physical 
turns ratios, and short-circuit current measurements used to find the “leakage” inductors.  This 
approach is particularly good since subtractions of measurements are completely avoided, which 
otherwise could cause small-difference-of-large-numbers problems (which are particularly acute in 
magnetic systems with very strong or very weak couplings).  
 
 

 
 
 



-------------------------------------------------------------- 

Example  -- Characterizing a Flyback Transformer  (written for 
presentation in a side box.  If not, may want to change transitions) 

 
Measurement difficulties are encountered even in two-winding transformers, and a two-winding 
example helps demonstrate the challenges.  Consider a 5:1 flyback transformer (𝑁𝑁 = 𝑁𝑁1/𝑁𝑁2 = 5) with 
the following measurements (taken from a real transformer):   
 

1) the primary inductance is measured with the secondary open-circuited, yielding 𝐿𝐿11 = 1987μ𝐻𝐻; 
2) the secondary inductance is measured with the primary open-circuited, yielding 𝐿𝐿22 =

79.98μ𝐻𝐻; 
3) An ac voltage of 1.047 V is applied to the primary with the secondary open-circuited; the 

secondary voltage is measured at 0.2082 V. 
 
The T-model transformer parameters are easily found:   
 

𝐿𝐿𝐶𝐶 = 𝑁𝑁𝐿𝐿11
𝑣𝑣2
𝑣𝑣1

=  1975.6132 ≈ 1976 μH 

𝐿𝐿𝐴𝐴 = 𝐿𝐿11–𝐿𝐿𝐶𝐶  =  1987 −  1975.6132 = 11.3868 ≈ 11.39 μH 
𝐿𝐿𝐵𝐵 = 𝑁𝑁2𝐿𝐿22–𝐿𝐿𝐶𝐶 = 1999.5− 1975.6132 = 23.8868 ≈ 23.89 μH 

 
In this case, finding 𝐿𝐿𝐴𝐴 and 𝐿𝐿𝐵𝐵 requires subtractions of large numbers that are about 1% apart.  Small-
percentage errors in the large numbers can yield wildly incorrect results.  For example, consider what 
would happen if the 𝐿𝐿11 and 𝑣𝑣2/𝑣𝑣1 measurements each had ± 2% error.  First consider 𝐿𝐿𝐴𝐴, the primary-
side leakage inductance.   In a flyback converter, this parameter should be known accurately to account 
for leakage losses or to properly design an active or passive clamp.  Calculations of 𝐿𝐿𝐴𝐴 across small 
measurement errors yield a very wide range of results, as shown in Fig. 7 – an approximately 80 𝜇𝜇H 
range for a nominally 11 μH parameter.  Fig. 7 demonstrates that achieving reasonable accuracy of 𝐿𝐿𝐴𝐴 
would require the 𝐿𝐿11 measurement to be accurate to ~0.1%, which can be very difficult to achieve.  
 



 
Figure 7 - Calculated values for 𝐿𝐿𝐴𝐴 in the T model of a flyback transformer, showing that small measurement errors can produce 

a range of results that is ≈ 8 times as large as the nominal result. 

 
The secondary-side leakage is also an important parameter, as it can lead to undesired load regulation 
and degraded cross-regulation between multiple outputs and/or sense windings (though, as we show, 
transformers with 3 or more windings have additional complexity beyond simple leakage models).  Fig. 8 
shows that the primary-referred secondary-side leakage (𝐿𝐿𝐵𝐵) is strongly affected by measurement errors 
of both 𝐿𝐿11 and 𝑣𝑣2/𝑣𝑣1 – errors of ±2% of each parameter yield a 160 μH range of results for a nominally 
20 μH parameter.   
 

 
Figure 8 - Calculated values for 𝐿𝐿𝐵𝐵 in the T model of a flyback transformer, showing that small measurement errors in multiple 

parameters can produce widely varying results 

 



 
 
The small-difference-of-large-numbers problem can also yield non-physical results.  Calculating the 
coupling coefficient (𝑘𝑘 = 𝐿𝐿12/�𝐿𝐿11𝐿𝐿22) with similar measurement errors yields Fig. 8.  The top-right 
region of Fig. 9 makes clear that small errors are liable to yield a coupling coefficient that is physically 
impossible (|𝑘𝑘| > 1).   
 

 
Figure 9 - Calculated values of coupling coefficient for a flyback transformer, showing that small measurement errors can yield 

non-physical models (e.g. k > 1). 

 
This flyback example highlights the need for modeling approaches with low numerical sensitivity by 
using only high-accuracy measurements and – where possible – by avoiding subtractions (or at least 
small differences of large numbers) when computing model parameters. 
 
END OF EXAMPLE 
------------------------------------------------------------------------------------------------- 
 
 
 

 Apply Condition to Winding   
 1 2 3 Measure  

𝑚𝑚1 𝑣𝑣1 OC OC 𝑍𝑍1 = 𝑗𝑗𝑗𝑗𝐿𝐿𝑚𝑚 
𝑚𝑚2 𝑣𝑣1 OC OC 𝑣𝑣2/𝑣𝑣1 = 𝑛𝑛2 
𝑚𝑚3 𝑣𝑣1 OC OC 𝑣𝑣3/𝑣𝑣1 = 𝑛𝑛3 
𝑚𝑚4 𝑣𝑣1 SC SC 𝑣𝑣1/𝑖𝑖2 = 𝑗𝑗𝑗𝑗𝑗𝑗12 × 𝑛𝑛12   
𝑚𝑚5 𝑣𝑣1 SC SC 𝑣𝑣1/𝑖𝑖3 = 𝑗𝑗𝑗𝑗𝑗𝑗13 × 𝑛𝑛13  
𝑚𝑚6 SC 𝑣𝑣2 SC 𝑣𝑣2/𝑖𝑖3 = 𝑗𝑗𝑗𝑗𝑗𝑗23 × 𝑛𝑛23  

Table 1 - Recommended measurements to identify parameters in the Extended Cantilever Model with three windings.  These 
recommendations require short-circuit current measurements but no subtractions.  OC means “Open Circuit”, SC means “Short 
Circuit”. 



 
 
As a useful necessary-and-sufficient model, perhaps the only substantive complaint that can be levied 
against the Extended Cantilever Model is the recommended process for determining model parameters, 
which includes the need to measure currents at short-circuited ports [22].  Current measurements 
typically require bulky sensors that themselves impose inductive and/or resistive impedances on the 
circuit, both of which become more restrictive concerns as frequency increases and size decreases.  
Given the complexity of the model, it is difficult to predict a priori if external impedances, or artificial 
inductances from measurement loops, will be negligible compared to what one is trying to measure.   
 
Therefore, it would be advantageous to have a necessary-and-sufficient representation that only 
requires voltage measurements, which are easier to make with high confidence at even tens of MHz.  In 
particular, we would like to use only one-port impedance measurements or two-port voltage ratios that 
can be obtained on an impedance analyzer.   It is also preferable, where possible, to have 
measurements that require open-circuit terminations rather than short-circuit terminations, as these 
are easier to realize at high frequency5.  We would like any required calculations to avoid small-
differences-of-large-numbers problems as well.   
 
One way to approach this problem is to observe that the offending measurements in the Extended 
Cantilever Model arise from the connection of the internal nodes (a delta connection in the three-
winding case).  We might hypothesize, perhaps without perfect rigor, that creating a model with the 
graphical dual (i.e. a Y-connection) of the internal section might allow for voltage measurements in place 
of currents.   Such a model is shown in Fig. 10, with available well-behaved measurements in Table 2.  
Combining these measurements turns out to be fruitful in obtaining every parameter using only one-
port impedance and two-port voltage ratio measurements and without any subtractions (Table 3).   For 
completeness, the mappings between this model and the inductance matrix are provided in Table 4; this 
complements the mappings provided for the cantilever model in [21].   
 
 
 

                                                           
5 At sufficiently high frequencies it becomes difficult to impose sufficiently good short or open circuits at ports; it is partially for 
this reason that S-parameter measurements become the dominant approach at radio frequencies. 



 
Figure 10 – A modification to the Extended Cantilever Model with the graphical dual of the inner network.  For three windings, 
the designer can characterize each parameter using only one-port impedance and two-port voltage ratio measurements, 
without any subtractions.  It has the same advantages as the Extended Cantilever Model with extended utility at higher 
frequencies. 

 
 Apply Condition to 

Winding 
  

 1 2 3 Measure  
𝑚𝑚1 𝑣𝑣1 OC OC 𝑍𝑍1/𝑗𝑗ω = 𝐿𝐿𝑚𝑚 
𝑚𝑚2 𝑣𝑣1 OC OC 𝑣𝑣2/𝑣𝑣1 = 𝑛𝑛2 
𝑚𝑚3 𝑣𝑣1 OC OC 𝑣𝑣3/𝑣𝑣1 = 𝑛𝑛3 
𝑚𝑚4 𝑣𝑣1 SC OC 𝑣𝑣3/𝑣𝑣1 = 𝐿𝐿2/(𝐿𝐿2 + 𝐿𝐿1) × 𝑛𝑛3 
𝑚𝑚5 𝑣𝑣1 OC SC 𝑣𝑣2/𝑣𝑣1 = 𝐿𝐿3/(𝐿𝐿3 + 𝐿𝐿1) × 𝑛𝑛2 
𝑚𝑚6 SC 𝑣𝑣2 OC 𝑍𝑍2/𝑗𝑗ω = (𝐿𝐿2 + 𝐿𝐿1) × 𝑛𝑛22 
𝑚𝑚7 SC OC 𝑣𝑣3 𝑍𝑍3/𝑗𝑗ω = (𝐿𝐿3 + 𝐿𝐿1) × 𝑛𝑛32 
𝑚𝑚8 SC 𝑣𝑣2 OC 𝑣𝑣3/𝑣𝑣2 = 𝐿𝐿1/(𝐿𝐿1 + 𝐿𝐿2) × 𝑛𝑛3/𝑛𝑛2 
𝑚𝑚9 SC OC 𝑣𝑣3 𝑣𝑣2/𝑣𝑣3 = 𝐿𝐿1/(𝐿𝐿1 + 𝐿𝐿3) × 𝑛𝑛2/𝑛𝑛3 

Table 2 - Well-behaved measurements available for the three-winding model in Fig. 9. 

 
𝐿𝐿𝑚𝑚 𝑚𝑚1 
𝑛𝑛2 𝑚𝑚2 
𝑛𝑛3 𝑚𝑚3 
𝐿𝐿1 𝑚𝑚8𝑚𝑚6/(𝑚𝑚2𝑚𝑚3)  OR  𝑚𝑚9𝑚𝑚7/(𝑚𝑚2𝑚𝑚3) 
𝐿𝐿2 𝑚𝑚4𝑚𝑚6/(𝑚𝑚3𝑚𝑚2

2) 
𝐿𝐿3 𝑚𝑚5𝑚𝑚7/(𝑚𝑚2𝑚𝑚3

2) 
Table 3 - Measurements from Table 2 can be combined to yield the model parameters in Fig. 9 without resorting to subtractions 
and the ensuing numerical dangers. 

We have therefore achieved a necessary-and-sufficient circuit model that can represent three-winding 
structures and can be characterized by measurements that are well-behaved to high frequency, making 
such a model very suitable for many power electronics applications.   
 



 
𝐿𝐿11 = 𝐿𝐿𝑚𝑚  𝐿𝐿𝑚𝑚 = 𝐿𝐿11 
𝐿𝐿22 = (𝐿𝐿𝑚𝑚 + 𝐿𝐿1 + 𝐿𝐿2)  × 𝑛𝑛22  𝑛𝑛2 = 𝐿𝐿12/𝐿𝐿11 
𝐿𝐿33 = (𝐿𝐿𝑚𝑚 + 𝐿𝐿1 + 𝐿𝐿3) × 𝑛𝑛32  𝑛𝑛3 = 𝐿𝐿13/𝐿𝐿11 
𝐿𝐿12 = 𝐿𝐿𝑚𝑚 × 𝑛𝑛2  𝐿𝐿1 = 𝐿𝐿23𝐿𝐿112 /(𝐿𝐿12𝐿𝐿13)–𝐿𝐿11 
𝐿𝐿13 = 𝐿𝐿𝑚𝑚 × 𝑛𝑛3  𝐿𝐿2 = 𝐿𝐿22𝐿𝐿112 /𝐿𝐿122 –𝐿𝐿23𝐿𝐿112 /(𝐿𝐿12𝐿𝐿13) 
𝐿𝐿23 = (𝐿𝐿𝑚𝑚 + 𝐿𝐿1) × 𝑛𝑛2𝑛𝑛3  𝐿𝐿3 = 𝐿𝐿33𝐿𝐿112 /𝐿𝐿132 –𝐿𝐿23𝐿𝐿112 /(𝐿𝐿12𝐿𝐿13) 

Table 4 - Mapping the model in Fig. 9 to the inductance matrix and back. 

 
Before extending the model to >3 windings, it is useful to note the variety of applications of three-
winding transformers.  Many applications have dual input or dual output (especially, for example, 
supplying “hotel” or auxiliary power to the analog and digital functions within a power converter).  
Transformers in high-frequency power conversion commonly contain an auxiliary winding for sensing.  
Recent research has also made greater use of stacking power conversion units in multiple voltage 
domains and using dual-input transformers to recombine the power and provide isolation [5-8].  
Additionally, center-tapped secondaries and novel approaches to circuit-magnetics interaction like that 
of [23] are structures that, for purposes of modeling, are 3-winding structures.  Furthermore, the use of 
“integrated magnetics” can achieve both high density and functional integration. 
 
 
 
 
 
 

  



Extension to >3 Windings 
 
A strong benefit of the Extended Cantilever Model is that it can, in principle, model general M-winding 
magnetic components.  Insofar as the proposed model involves a graphical dual of (part of) the 
Extended Cantilever Model, it is likewise extensible to any number of windings.  However, for more than 
three windings, the Extended Cantilever Model has a non-planar graph, i.e. there are branches that 
cross each other, and there is no way to draw the circuit without the crossings.  Taking the dual of a 
non-planar graph is ordinarily impossible, but can be enabled with a small circuit trick as demonstrated 
in Fig. 11 [24].  Any crossing branches may be redrawn as intersecting, provided that an ideal 1:1 
transformer is inserted on one of the branches.  Thus the voltage in one branch still has no effect on the 
other branch, just as when they were disconnected.  Once this modified planar (but electrically 
equivalent) graph has been drawn, the dual may be taken as usual.   
 

 
Figure 11 - Topological duality is not directly applicable to non-planar graphs.  When unavoidable crossings occur, the graph 
may be modified to an electrical equivalent which is graphically planar [24] and the dual may be found [13]. 

 
Performing these operations for the four-winding case converts the Extended Cantilever Model (Fig. 12) 
to the proposed model (Fig 13).  As before, a table of well-behaved measurements for the proposed 
model is shown in Table 5. 
 
 
 
 



 
Figure 12 - The Extended Cantilever Model for four windings contains one unavoidable non-planar crossing.  The dual of the 

inner section may be taken using the method in Fig. 10. 

 
 
 

 
Figure 13 - Four-winding version of the proposed model, as derived from the Extended Cantilever Model.  In this case, most 

parameters may still be obtained using only one-port impedance and two-port voltage ratio measurements.  Some parameters 
may require current sensing or subtractions to determine, though several options are available to choose from to minimize 

error. 

 
 
 
 
 
 
 
 



 
 

 Apply Condition to Winding   
 1 2 3 4 Measure  

𝑚𝑚1 𝑣𝑣1 OC OC OC 𝑍𝑍1 = 𝑗𝑗𝑗𝑗𝐿𝐿𝑚𝑚 
       

𝑚𝑚2 𝑣𝑣1 OC OC OC 𝑣𝑣2/𝑣𝑣1 = 𝑛𝑛2 
𝑚𝑚3 𝑣𝑣1 OC OC OC 𝑣𝑣3/𝑣𝑣1 = 𝑛𝑛3 
𝑚𝑚4 𝑣𝑣1 OC OC OC 𝑣𝑣4/𝑣𝑣1 = 𝑛𝑛4 

       
𝑚𝑚5 𝑣𝑣1 OC OC SC 𝑣𝑣2/𝑣𝑣1 = (𝐿𝐿4 + 𝐿𝐿5)/(𝐿𝐿1 + 𝐿𝐿4 + 𝐿𝐿5) × 𝑛𝑛2 
𝑚𝑚6 𝑣𝑣1 OC OC SC 𝑣𝑣3/𝑣𝑣1 = 𝐿𝐿4/(𝐿𝐿1 + 𝐿𝐿4 + 𝐿𝐿5) × 𝑛𝑛3 

       
𝑚𝑚7 𝑣𝑣1 OC SC OC 𝑣𝑣2/𝑣𝑣1 = (𝐿𝐿3 + 𝐿𝐿5)/(𝐿𝐿1 + 𝐿𝐿3 + 𝐿𝐿5 + 𝐿𝐿6) × 𝑛𝑛2 
𝑚𝑚8 𝑣𝑣1 OC SC OC 𝑣𝑣4/𝑣𝑣1 = (𝐿𝐿3 + 𝐿𝐿6)/(𝐿𝐿1 + 𝐿𝐿3 + 𝐿𝐿5 + 𝐿𝐿6) × 𝑛𝑛4 

       
𝑚𝑚9 𝑣𝑣1 SC OC OC 𝑣𝑣3/𝑣𝑣1 = 𝐿𝐿2/(𝐿𝐿1 + 𝐿𝐿2 + 𝐿𝐿6) × 𝑛𝑛3 
𝑚𝑚10 𝑣𝑣1 SC OC OC 𝑣𝑣4/𝑣𝑣1 = (𝐿𝐿2 + 𝐿𝐿6)/(𝐿𝐿1 + 𝐿𝐿2 + 𝐿𝐿6) × 𝑛𝑛4 

       
𝑚𝑚11 SC 𝑣𝑣2 OC OC 𝑍𝑍2 = 𝑗𝑗𝑗𝑗(𝐿𝐿1 + 𝐿𝐿2 + 𝐿𝐿6) × 𝑛𝑛22 
𝑚𝑚12 SC OC 𝑣𝑣3 OC 𝑍𝑍3 = 𝑗𝑗𝑗𝑗(𝐿𝐿1 + 𝐿𝐿3 + 𝐿𝐿5 + 𝐿𝐿6) × 𝑛𝑛32 
𝑚𝑚13 SC OC OC 𝑣𝑣4 𝑍𝑍4 = 𝑗𝑗𝑗𝑗(𝐿𝐿1 + 𝐿𝐿4 + 𝐿𝐿5) × 𝑛𝑛42 

       
𝑚𝑚14 SC 𝑣𝑣2 OC OC 𝑣𝑣3/𝑣𝑣2 = (𝐿𝐿1 + 𝐿𝐿6)/(𝐿𝐿1 + 𝐿𝐿2 + 𝐿𝐿6) × 𝑛𝑛3/𝑛𝑛2 
𝑚𝑚15 SC 𝑣𝑣2 OC OC 𝑣𝑣4/𝑣𝑣2 = 𝐿𝐿1/(𝐿𝐿1 + 𝐿𝐿2 + 𝐿𝐿6) × 𝑛𝑛4/𝑛𝑛2 

       
𝑚𝑚16 SC OC 𝑣𝑣3 OC 𝑣𝑣2/𝑣𝑣3 = (𝐿𝐿1 + 𝐿𝐿6)/(𝐿𝐿1 + 𝐿𝐿3 + 𝐿𝐿5 + 𝐿𝐿6) × 𝑛𝑛2/𝑛𝑛3 
𝑚𝑚17 SC OC 𝑣𝑣3 OC 𝑣𝑣4/𝑣𝑣3 = (𝐿𝐿1 + 𝐿𝐿5)/(𝐿𝐿1 + 𝐿𝐿3 + 𝐿𝐿5 + 𝐿𝐿6) × 𝑛𝑛4/𝑛𝑛3 

       
𝑚𝑚18 SC OC OC 𝑣𝑣4 𝑣𝑣2/𝑣𝑣4 = 𝐿𝐿1/(𝐿𝐿1 + 𝐿𝐿4 + 𝐿𝐿5) × 𝑛𝑛2/𝑛𝑛4 
𝑚𝑚19 SC OC OC 𝑣𝑣4 𝑣𝑣3/𝑣𝑣4 = (𝐿𝐿1 + 𝐿𝐿5)/(𝐿𝐿1 + 𝐿𝐿4 + 𝐿𝐿5) × 𝑛𝑛3/𝑛𝑛4 

Table 5 - Available well-behaved measurements for the proposed model, extended to four windings in Fig. 12.  While some of the 
measurements require short-circuit terminations at ports, none of the tests here require current sensing. 

 
 
 
 
 
 
 
 
 
 
 
 
 



 
In Table 6, we find that the proposed model for four-winding structures can yield 7/10 parameters with 
fully well-behaved measurements and calculations (more than the 4/10 such parameters of the 
Extended Cantilever Model).  The remaining three parameters may be obtained by less desirable means 
(subtraction, current sensing, etc.) where sensitivity allows, and there are several ways to obtain each of 
the remaining parameters. 
 

𝐿𝐿𝑚𝑚 𝑚𝑚1 
𝑛𝑛2 𝑚𝑚2 
𝑛𝑛3 𝑚𝑚3 
𝑛𝑛4 𝑚𝑚4 
𝐿𝐿1 𝑚𝑚18𝑚𝑚13/(𝑚𝑚2𝑚𝑚4) OR 𝑚𝑚15𝑚𝑚11/(𝑚𝑚2𝑚𝑚4) 
𝐿𝐿2 𝑚𝑚9𝑚𝑚11/(𝑚𝑚3𝑚𝑚2

2) 
𝐿𝐿3 - 
𝐿𝐿4 𝑚𝑚6𝑚𝑚13/(𝑚𝑚3𝑚𝑚4

2) 
𝐿𝐿5 - 
𝐿𝐿6 - 

Table 6 - Well-behaved measurements for the proposed four-winding model can be used to derive seven of the ten model 
parameters without subtraction, an improvement over 4/10 for the four-winding Extended Cantilever Model. 

 
 

Conclusion 
 
As designers strive to best take advantage of good switching devices and best grapple with the magnetic 
bottleneck, the solution often involves more complex magnetic structures.  Modeling such structures 
with mathematics, necessary-and-sufficient circuit models, and physical circuit models is an essential 
element in understanding their complicated behavior.  Our brief review here has covered some of the 
primary modeling approaches, their advantages and disadvantages, and the translation between them.   
 
In addition, we introduced a necessary-and-sufficient circuit model with characterization advantages 
over the Extended Cantilever Model.  In a three-winding structure, the complete set of parameters can 
be obtained with only one-port impedance and two-port voltage ratio measurements, which can reliably 
be obtained to very high frequencies (compared to 3/6 parameters in the Extended Cantilever Model).  
In a four-winding structure, the proposed model can find 7/10 parameters in this way (compared to 
4/10 for the Extended Cantilever Model).  This model may therefore be useful for a wide range of many-
winding magnetic structures, with a high ceiling on appropriate frequencies. 
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