(12) United States Patent

Perreault et al.
(10) Patent No.: US 10,075,064 B2
(45) Date of Patent:

Sep. 11, 2018
(54) HIGH-FREQUENCY, HIGH DENSITY POWER FACTOR CORRECTION CONVERSION FOR UNIVERSAL INPUT GRID INTERFACE

Applicant: Massachusetts Institute of
Technology, Cambridge, MA (US)
Inventors: David J. Perreault, Andover, MA
(US); Khurram K. Afridi, Boulder, CO
(US); Juan A. Santiago-Gonzalez,
Cambridge, MA (US); David M. Otten,
Newton, MA (US)
(73)

Assignee: Massachusetts Institute of Technology, Cambridge, MA (US)
(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 57 days.

Appl. No.: 14/791,685
(22)

Filed:
Jul. 6, 2015

US 2016/0006365 A1 Jan. 7, 2016
Related U.S. Application Data
(60) Provisional application No. 62/020,472, filed on Jul. 3, 2014.
(51) Int. Cl.

H02M 1/42 (2007.01)
H02M 1/14 (2006.01)
(52) U.S. Cl.

CPC H02M 1/4208 (2013.01); H02M 1/14
(2013.01); Y02B 70/126 (2013.01)
(58) Field of Classification Search

СРС H02M 1/4208; H02M 7/217; Н02M 7/02; H02M 1/42

References Cited
U.S. PATENT DOCUMENTS

FOREIGN PATENT DOCUMENTS
DE $\quad 10358299 \mathrm{Al} \quad 7 / 2005$

EP $\quad 0513920$ A2 $11 / 1992$
(Continued)

OTHER PUBLICATIONS

U.S. Appl. No. 14/708,903, filed May 11, 2015, Giuliano et al.
(Continued)
Primary Examiner - Kyle J Moody
(74) Attorney, Agent, or Firm - Daly, Crowley, Mofford \& Durkee, LLP; Christopher S. Daly

(57)

ABSTRACT

A circuit includes a reconfigurable rectifier, a voltage balancer, and a pair of converters. The reconfigurable rectifier includes an ac input port and three output ports. In a first configuration, the reconfigurable rectifier can deliver power at a first output port and, in a second configuration, to at least a second output port. The voltage balancer includes first and second ports coupled to second and third output ports of the reconfigurable rectifier and is configured to balance received voltage at the first and second ports. The first converter has an input coupled to the first port of the voltage balancer and an output at which a first converted voltage signal is provided. The second converter has an input coupled to the second port of the voltage balancer and an output at which a second converted voltage signal is provided.

20 Claims, 14 Drawing Sheets

Field of Classification Search
USPC
See application file for complete search history.
(56)

References Cited
U.S. PATENT DOCUMENTS

3,818,360	A	6/1974	Boutmy et al.
4,214,174	A	7/1980	Dickson
4,513,364	A	4/1985	Nilssen
4,812,961	A	3/1989	Essaff et al.
4,903,181	A	2/1990	Seidel
5,057,986	A	10/1991	Henze et al.
5,119,283	A *	6/1992	Steigerwald H02M 1/10 $\begin{array}{r}\text { 323/207 }\end{array}$
5,132,606	A	7/1992	Herbert
5,159,539	A	10/1992	Koyama
5,198,970	A	3/1993	Kawabata et al.
5,268,832	A	12/1993	Kandatsu
5,301,097	A	4/1994	McDaniel
5,331,303	A	7/1994	Shiota
5,402,329	A	3/1995	Wittenbreder
5,557,193	A	9/1996	Kajimoto
5,661,348	A*	8/1997	Brown H02M 1/4208
5,717,581	A	2/1998	Canclini
5,737,201	A	4/1998	Meynard et al.
5,761,058	A	6/1998	Kanda et al.
5,793,626	A*	8/1998	$\begin{array}{r} \text { Jiang H02M 7/217 } \\ 323 / 222 \end{array}$
5,801,987	A	9/1998	Dinh
5,812,017	A	9/1998	Golla et al.
5,831,846	A *	11/1998	Jiang H02M 1/4208 $\begin{array}{r}363 / 125\end{array}$
5,892,395	A	4/1999	Stengel et al.
5,907,484	A	5/1999	Kowshik et al.
5,956,243	A *	9/1999	Mao H02M 1/4208
5,959,565	A	9/1999	Taniuchi et al.
5,978,283	A	11/1999	Hsu et al.
5,982,645	A	11/1999	Levran et al.
6,107,864	A	8/2000	Fukushima et al.
6,133,788	A	10/2000	Dent
6,140,807	A	10/2000	Vannatta et al.
6,154,380	A *	11/2000	Assow H02M 1/10 $\begin{array}{r}363 / 61\end{array}$
6,157,253	A	12/2000	Sigmon et al.
6,178,102	B1*	1/2001	$\begin{array}{r} \text { Stanley H02M 7/19 } \\ 323 / 901 \end{array}$
6,198,645	B1	3/2001	Kotowski et al.
6,255,906	B1	7/2001	Eidson et al.
6,275,018	B1	8/2001	Telefus et al.
6,327,462	B1	12/2001	Loke et al.
6,339,538	B1	1/2002	Handleman
6,377,117	B2	4/2002	Oskowsky et al.
6,396,341	B1	5/2002	Pehlke
6,476,666	B1	11/2002	Palusa et al.
6,486,728	B2	11/2002	Kleveland
6,501,325	B1	12/2002	Meng
6,504,422	B1	1/2003	Rader et al.
6,507,503	B2	1/2003	Norrga
6,515,612	B1	2/2003	Abel
6,563,235	B1	5/2003	McIntyre et al.
6,650,552	B2	11/2003	Takagi et al.
6,700,803	B2	3/2004	Krein
6,738,277	B2 *	5/2004	Odell H02J 7/0016
			363/143
6,738,432	B2	5/2004	Pehlke et al.
6,759,766	B2	7/2004	Hiratsuka et al.
6,927,441	B2	8/2005	Pappalardo et al.
6,934,167	B2	8/2005	Jang et al.
6,980,181	B2	12/2005	Sudo
7,072,195	B2	7/2006	Xu
7,091,778	B2	8/2006	Gan et al.
7,103,114	B1	9/2006	Lapierre
7,135,847	B2	11/2006	Taurand
7,145,382	B2	12/2006	Ker et al.

References Cited

U.S. PATENT DOCUMENTS

2004/0222775	A1	11/2004	M
2005/0007184	A1	1/2005	Kamijo
2005/0088865	A1	4/2005	Lopez et al.
2005/0207133	A1	9/2005	Pavier et al.
2005/0213267	A1	9/2005	Az
2005/0286278	A1	12/2005	Perreault et al.
2007/0035977	A1	2/2007	Odell
2007/0066224	A1	3/2007	d'Hont et
2007/0066250	A1	3/2007	Takahashi et al.
2007/0069818	A1	3/2007	Bhatti et
2007/0091655	A1	4/2007	Oyama et al.
2007/0123184	A1	5/2007	Nesimoglu et al.
2007/0146020	A1	6/2007	Williams
2007/0146090	A1	6/2007	Carey et al.
2007/0159257	A1	7/2007	Lee et al.
2007/0171680	A1	7/2007	Perreault et al.
2007/0210774	A1	9/2007	Kimura et al.
2007/0230221	A1	10/2007	Lim et al.
2007/0247222	A1	10/2007	Sorrells et al.
2007/0247253	A1	10/2007	Carey et al.
2007/0281635	A1	12/2007	McCallister et
2007/0290747	A1	12/2007	Traylor et al.
2007/0291718	A1	12/2007	Chan et al.
2007/0296383	A1	12/2007	Xu et
2008/0001660	A1	1/2008	Rasmussen
2008/0003960	A1	1/2008	Zolfaghari
2008/0003962	A1	1/2008	Ngai
2008/0007333	A1	1/2008	Lee et al.
2008/0012637	A1	1/2008	Aridas et
2008/0013236	A1	1/2008	Weng
2008/0019459	A1	1/2008	Chen et
2008/0031023	A1	2/2008	Kitagawa et al.
2008/0062724	A1	3/2008	Feng et al.
2008/0150621	A1	6/2008	Lesso et al.
2008/0157732	A1	7/2008	Williams
2008/0157733	A1	7/2008	Williams
2008/0158915	A1	7/2008	Williams
2008/0239772	A1	10/2008	Oraw et al.
2009/0059630	A1	3/2009	Williams
2009/0072800	A1	3/2009	Ramadass et al.
2009/0102439	A1	4/2009	Williams
2009/0147554	A1	6/2009	Adest et al.
2009/0196082	A1	8/2009	Mazumder et al.
2009/0257211	A1	10/2009	Kontani et al.
2009/0273955	A1	11/2009	Tseng et al.
2009/0278520	A1	11/2009	Perreault et al.
2009/0302686	A1	12/2009	Fishman
2009/0303753	A1	12/2009	Fu et al.
2009/0323380	A1	12/2009	Harrison
2010/0073084	A1	3/2010	Hur et al.
2010/0085786	A1	4/2010	Chiu et al.
2010/0110741	A1	5/2010	Lin et al.
2010/0117612	A1	5/2010	Klootwijk et al.
2010/0140736	A1	6/2010	Lin et al.
2010/0142239	A1	6/2010	Hopper
2010/0201441	A1	8/2010	Gustavsson
2010/0202161	A1	8/2010	Sims et al.
2010/0214746	A1	8/2010	Lotfi et al.
2010/0244189	A1	9/2010	Klootwijk et al.
2010/0244585	A1	9/2010	Tan et al.
2010/0308751	A1	12/2010	Nerone
2011/0001542	A1	1/2011	Ranta et al.
2011/0148518	A1	6/2011	Lejon et al.
2011/0163414	A1	7/2011	Lin et al.
2011/0181128	A1	7/2011	Perreault et al.
2012/0043818	A1	2/2012	Stratakos et al.
2012/0146177	A1	6/2012	Choi et al.
2012/0153907	A1	6/2012	Carobolante et
2012/0176195	A1	7/2012	Dawson et al.
2012/0313602	A1	12/2012	Perreault et al.
2012/0326684	A1	12/2012	Perreault et al.
2013/0049714	A1	2/2013	Chiu
2013/0094157	A1	4/2013	Giuliano et al.
2013/0154600	A1	6/2013	Giuliano et al.
2013/0241625	A1	9/2013	Perreault et al.

2013/0343106 A1	12/2013	Perreault et al.	
2013/0343107 Al	12/2013	Perreault	
2014/0118065 Al	5/2014	Briffa et al.	
2014/0118072 Al	5/2014	Briffa et al.	
2014/0120854 A1	5/2014	Briffa et al.	
2014/0167513 A1	6/2014	Chang et al.	
2014/0225581 Al	8/2014	Giuliano et al.	
2014/0226378 A1	8/2014	Perreault	
2014/0306648 Al	10/2014	Le et al.	
2014/0306673 A1	10/2014	Le et al.	
2014/0313781 Al	10/2014	Perreault et al.	
2014/0335805 Al	11/2014	Briffa et al.	
2014/0339918 A1	11/2014	Perreault et al.	
2014/0355322 A1	12/2014	Perreault et al.	
2015/0022173 A1	1/2015	Le et al.	
2015/0023063 A1*	1/2015	Perreault	H02M 3/337
			363/17
2015/0084701 Al	3/2015	Perreault et al.	
2015/0097538 A1	4/2015	Le et al.	
2015/0295497 A1	10/2015	Perreault et al.	
2015/0357912 A1*	12/2015	Perreault	H02M 1/4208
			363/126
2016/0254754 Al	9/2016	Perreault et al.	

FOREIGN PATENT DOCUMENTS

EP	1750366	A2	$2 / 2007$
EP	1750366	A3	$2 / 2007$
JP	$H 10327573$	A	$12 / 1998$
JP	H11235053	A	$8 / 1999$
JP	$2002-62858$		$2 / 2002$
JP	$2010 / 045943$	A	$2 / 2010$
WO	WO 2006/093600	A2	$9 / 2006$
WO	WO 2007/136919	A2	$11 / 2007$
WO	WO 2007/136919	A3	$11 / 2007$
WO	WO 2009/112900	A1	$9 / 2009$
WO	WO 2012151466	A2	$11 / 2012$
WO	WO 2013/059446	A1	$4 / 2013$
WO	WO 2013/086445	A1	$6 / 2013$
WO	WO 2013/096416	A1	$6 / 2013$
WO	WO2013086445	A1	$6 / 2013$
WO	WO 2014/168911	A1	$10 / 2014$

OTHER PUBLICATIONS

U.S. Appl. No. 14/758,033, filed Jun. 26, 2015, Perreault et al. Alspach; "Solar Power Inverter Manufacturers Get Day in Sun;" Boston Business Journal; Oct. 29, 2010; 1 page.
Denning; "Solar Market Is Risking Sunstroke;" Wall Street Journal; Dec. 11-12, 2010, 1 page.
Pierquet, et al.; "A Single-Phase Photovoltaic Inverter Topology with a Series-Connected Power Buffer;" (ECCE), IEEE, Sep. 2010, pp. 1-9.
Trubitsyn, et al.; High-Efficiency Inverter for Photovoltaic Applications; (ECCE), IEEE, Sep. 2010, pp. 1-9.
Bush, et al.; "A Single-Phase Current Source Solar Inverter with Reduced-Size DC Link," Energy Conversion Congress and Exposition; IEEE; Sep. 20, 2009; 6 Pages.
Krein, et al.; "Cost-Effective Hundred-Year Life for Single-Phase Inverters and Rectifiers in Solar and LED Lighting Applications Based on Minimum Capacitance Requirements and a Ripple Power Port;" Applied Power Electronics Conference and Exposition; IEEE; Feb. 15, 2009; 6 Pages.
Li; "A Review of the Single Phase Photovoltaic Module Integrated Converter Topologies With Three Different DC Link Configurations;" IEEE Transactions on Power Electronics; vol. 23; No. 3; May 2008; 14 Pages.
Invitation to Pay Additional Fees dated Jul. 5, 2011 for International Application No. PCT/US2011/022056; 3 Pages.
Partial Search Report of the ISA dated Jul. 5, 2011 for International Application No. PCT/US2011/022056; 6 Pages.
PCT Search Report and Written Opinion dated Sep. 23, 2011 for International Application No. PCT/US2011/022056; 15 Pages.
PCT International Preliminary Report on Patentability dated Aug. 2, 2012 for International Application No. PCT/US2011/022056; 9 Pages.

References Cited

OTHER PUBLICATIONS

Ozpineci, et al.; "Cycloconverters;" An on-line tutorial for the IEEE Power Electronics Society; http://pels.org/Comm/Education/Tutorials/tutorials.htm; 2001; 17 Pages.
Perreault et al.; "Multi-Phase Grid Interface;" for U.S. Appl. No. 13/795,633, filed Mar. 12, 2013; 41 Pages.
PCT International Search Report and Written Opinion dated May 13, 2013 for International Application No. PCT/US2013/030383; 13 Pages.
PCT International Preliminary Report and Written Opinion dated May 26, 2011 for International Application No. PCT/US2009/ 063821; 9 Pages.
Amendment to Office Action dated Apr. 7, 2011 for U.S. Appl. No. 12/680,048; 7 Pages.
PCT Search Report and Written Opinion dated Apr. 13, 2010 for International Application No. PCT/US2009/063821; 16 Pages.
PCT Invitation to Pay Additional Fees dated Feb. 9, 2010 for International Application No. PCT/US2009/063821; 44 Pages.
Xuejun Zhang, et al., "Analysis of Power Recycling Techniques for RF and Microwave Outphasing Power Amplifiers", IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Porcessing, vol. 49, No. 5, May 2002, 9 Pages.
Sungwon Chung, et al., "Asymmetric Multilevel Outphasing Architecture for Multi-Standard Transmitters", 2009 IEEE Radio Frequency Integrated Circuits Symposium, 4 Pages.
D. Diaz, et al., "Comparison of Two Different Cell Topologies for a Multilevel Power Supply to Achieve High Efficiency Envelope Amplifier", IEEE, 2009, 6 Pages.
M. Rodriguez, et al., "Multilevel Converter for Envelope Tracking in RF Power Amplifiers", IEEE, 2009, 8 Pages.
Yuan-Jyue Chen, et al., "Multilevel LINC System Design for Wireless Transmitters", IEEE, 2007, 4 Pages.
Jinsung Choi, et al., "A $\Delta \Sigma$-Digitized Polar RF Transmitter", IEEE Transactions on Microwave Theory and Techniques, vol. 55, No. 12, Dec. 2007, 12 Pages.
Kai-Yuan Jheng, et al., "Multilevel LINC System Design for Power Efficiency Enhancement", IEEE, 2007, 4 Pages.
Kevin Tom, et al., "Load-Pull Analysis of Outphasing Class-E Power Amplifier", The $2^{\text {nd }}$ International Conference on Wireless Broadband and Ultra Wideband Communications (AusWireless 2007), IEEE, 2007, 4 Pages.

Yehui Han, et al., "Resistance Compression Networks for RadioFrequency Power Conversion", IEEE Transactions on Power Electronics, vol. 22, No. 1, Jan. 2007, 13 Pages.
Surya Musunuri, et al., "Improvement of Light-Load Efficiency Using Width-Switching Scheme for CMOS Transistors", IEEE Power Electronics Letters, vol. 3, No. 3, Sep. 2005, 6 Pages.
Frederick H. Raab, et al., "RF and Microwave Power Amplifier and Transmitter Technologies-Part 3", Sep. 2003, High Frequency Electronics, Summit Technical Media, LLC., 9 Pages.
Petri Eloranta, et al., "A Multimode Transmitter in $0.13 \mu \mathrm{~m}$ CMOS Using Direct-Digital RF Modulator", IEEE Journal of Solid-State Circuits, vol. 42, No. 12, Dec. 2007, 11 Pages.
Hur, et al., "Highly Efficient and Linear Level Shifting Digital LINC Transmitter with a Phase Offset Cancellation;" IEEE; Jul. 2009; 4 Pages.
Hur, et al., "A Multi-Level and Multi-Band Class-D CMOS Power Amplifier for the LINC System in the Cognitive Radio Application;" IEEE; Feb. 2010, 3 Pages.
Hur, et al., "Highly Efficient Uneven Multi-Level LINC Transmitter;" Electronics Letter; vol. 45; No. 16; Jul. 30, 2009; 2 Pages.
U.S. Appl. No. 12/615,696; 427 Pages.
U.S. Appl. No. 13/106,195; Part 1 of 2; 295 Pages.
U.S. Appl. No. 13/106,195; Part 2 of 2; 234 Pages.
U.S. Appl. No. 13/423,909; Part 1 of 4; 353 Pages.
U.S. Appl. No. 13/423,909; Part 2 of 4; 370 Pages.
U.S. Appl. No. 13/423,909; Part 3 of 4; 368 Pages.
U.S. Appl. No. 13/423,909; Part 4 of 4; 73 Pages.
U.S. Appl. No. 13/798,738; Part 1 of 7; 200 Pages.
U.S. Appl. No. 13/798,738; Part 2 of 7; 200 Pages.
U.S. Appl. No. 13/798,738; Part 3 of 7; 200 Pages.
U.S. Appl. No. 13/798,738; Part 4 of 7; 200 Pages.
U.S. Appl. No. 13/798,738; Part 5 of 7; 200 Pages.
U.S. Appl. No. 13/798,738; Part 7 of 7; 200 Pages.
U.S. Appl. No. 13/798,738; Part 7 of 7; 101 Pages.

Abutbul, et al.; "Step-Up Switching-Mode Converter with High Voltage Gain Using a Switched-Capacitor Circuit;" IEEE Transactions on Circuits and Systems-1: Fundamental Theory and Applications; vol. 50, No. 8; Aug. 2003; pp. 1098-1102.
Axelrod, et al.; "Single-Switch Single-Stage Switched-Capacitor Buck Converter;" $4^{\text {th }}$ Nordic Workshop on Power and Industrial Electronics; Jun. 2004; 5 pages.
Giuliano, et al.; "Architectures and Topologies for Power Delivery;"
Biannual Review of MIT Center for Integrated Circuits; Power Point Presentation; May 9, 2007; 17 slides.
Ma, et al.; "Design and Optimization on Dynamic Power Systems for Self-Powered Integrated Wireless Sensing Nodes;" Low Power Electronics and Design, 2005; ISLPED 05; Proceedings of the 2005 International Symposium; Aug. 8-10, 2005; pp. 303-306.
MAXIM; Triple-Output TFT-LCD DC-DC Converters; MAX1748/ MAX8726; 19/3430; Rev 0; Oct. 2004; pp. 1-16.
Ottman, et al.; "Optimized Piezoelectric Energy Harvesting Circuit Using Step-Down Converter in Discontinuous Conduction Mode;" Power Electronics Specialists Conference, 2002; pesc 02. 2002; IEEE $33^{\text {rd }}$ Annual; vol. 4; Jun. 23-27, 2002; pp. 1988-1994.
Sun, et al.; "High Power Density, High Efficiency System TwoStage Power Architecture for Laptop Computers;" $37^{\text {th }}$ IEEE Power Electronics Specialists Conference apros; 06; Jun. 18, 2006; 7 pages.
Wood, et al.; "Design, Fabrication and Initial Results of a 2 g Autonomous Glider;" Industrial Electronics Society, IECON 2005; $31^{s t}$ Annual Conference of IEEE: Nov. 6-10, 2005; pp. 1870-1877. Xu , et al.; Voltage Divider and its Application in the Two-stage Power Architecture; Applied Power Electronics Conference and Exposition 2006; APEC 06; Twenty-First Annual IEEE: Mar. 19-23, 2006; pp. 499-505.
U.S. Appl. No. 12/437,599; 210 Pages.
U.S. Appl. No. 13/487,781; Part 1 of 2; 251 Pages.
U.S. Appl. No. 13/487,781; Part 2 of 2; 230 Pages.
U.S. Appl. No. 13/599,037; Part 1 of 2; 200 Pages.
U.S. Appl. No. 13/599,037; Part 2 of 2; 269 Pages.
U.S. Appl. No. 14/251,917; Part 1 of 10; 225 Pages.
U.S. Appl. No. 14/251,917; Part 2 of 10; 225 Pages.
U.S. Appl. No. 14/251,917; Part 3 of 10; 225 Pages.
U.S. Appl. No. 14/251,917; Part 4 of 10; 225 Pages.
U.S. Appl. No. 14/251,917; Part 5 of 10; 225 Pages.
U.S. Appl. No. 14/251,917; Part 6 of 10; 225 Pages.
U.S. Appl. No. 14/251,917; Part 7 of 10; 225 Pages.
U.S. Appl. No. 14/251,917; Part 8 of 10; 225 Pages.
U.S. Appl. No. 14/251,917; Part 9 of 10; 225 Pages.
U.S. Appl. No. 14/251,917; Part 10 of 10; 146 Pages.
U.S. Appl. No. 13/011,317; 372 Pages.

Araghchini, et al.; "A Technology Overview of the PowerChip Development Program;" IEEE Transactions on Power Electronics; vol. 28; No. 9; Sep. 2013; 20 Pages.
Chen, et al.; "Stacked Switched Capacitor Energy Buffer Architecture;" IEEE Transactions on Power Electronics; Vo. 28; No. 11; Nov. 2013; 13 Pages.
Huber, et al.; "Design-Oriented Analysis and Performance Evaluation of Buck PFC Front End;" IEEE Transactions on Power Electronics; vol. 25; No. 1; Jan. 2010; 10 Pages.
Kjaer, et al.; "Design Optimization of a Single Phase Inverter for Photovoltaic Applications;" Power Electronics Specialist Conference; 2003; PESC 03; IEEE $34^{\text {th }}$ Annual; vol. 3; Jun. 15-19, 2003; 8 Pages.
Krein, et al.; "Cost-Effective Hundred-Year Life for Single Phase Inverters and Rectifiers in Solar and LED Lighting Applications Based on Minimum Capacitance Requirements and a Ripple Power
Port;" Applied Power Electronics Conference and Exposition; APEC 2009; Twenty-Fourth Annual IEEE; Feb. 15-19, 2009; 6 Pages.

References Cited

OTHER PUBLICATIONS

Kyritsis, et al.; "A Novel Parallel Active Filter for Current Pulsation Smoothing on Single Stage Grid- Connected AC-PV Modules;" Power Electronics and Applications; 2007 European Conference on; Sep. 2-5, 2007; 10 Pages.
Kyritsis, et al.; "Enhanced Current Pulsation Smoothing Parallel Active Filter for Single Stage Grid-Connected AC-PV Modules;" International Power Electronics and Motion Control Conference 2008; EPE-PEMC; 2008; $13^{\text {th }}$; 6 Pages.
Garcia, et al.; "Single Phase Power Factor Correction: A Survey;" IEEE Transactions on Power Electronics; vol. 18; No. 3; May 2003; 7 Pages.
Lam, et al.; "A Novel High-Power-Factor Single-Switch Electronic Ballast;" IEEE Transactions on Industry Applications; vol. 46; No. 6; Nov.Dec. 2010; 10 Pages.
Lim, et al.; "Power Conversion Architecture for Grid Interface at High Switching Frequency;" Applied Power Electronics Conference and Exposition (APEC); 2014 Twenty-Ninth Annual IEEE: 2014; 8 Pages.
Lim, et al.; "Two-Stage Power Conversion Architecture for an LED Driver Circuit;" Applied Power Electronics Conference and Exposition (APEC); 2013; Twenty-Eighth Annual IEEE; Mar. 17-21, 2013; 8 Pages.
Perreault, et al.; "Opportunities and Challenges in Very High Frequency Power Conversion;" Applied Power Electronics Conference and Exposition; 2009; APEC 2009; Twenty-Fourth Annual IEEE: Feb. 15-19, 2009; 14 Pages.
Pierquet, et al.; "A Single-Phase Photovoltaic Inverter Topology With a Series-Connected Energy Buffer;" IEEE Transactions on Power Electronics; vol. 28; No. 10; Oct. 2013; 9 Pages.
Pilawa-Podgurski, et al.; "Merged Two-Stage Power Converter With Soft Charging Switched-Capacitor Stage in 180 nm CMOS;" IEEE Journal of Solid-State Circuits; vol. 47; No. 7; Jul. 2012; 11 Pages.
Schlecht, et al.; "Active Power Factor Correction for Switching Power Supplies;" IEEE Transactions on Power Electronics; vol. PE-2; No. 4; Oct. 1987; 9 Pages.
Seeman, et al.; "Analysis and Optimization of Switched-Capacitor DC-DC Converters;" IEEE Transactions on Power Electronics; vol. 23; No. 2; Mar. 2008; 11 Pages.
Shimizu, et al.; "Flyback-Type Single-Phase Utility Interactive Inverter With Power Pulsation Decoupling on the DC Input for an AC Photovoltaic Module System;" IEEE Transactions on Power Electronics; vol. 21; No. 5; Sep. 2006; 9 Pages.
Singh, et al,; "A Review of Single-Phase Improved Power Quality AX-DC Converters;" IEEE Transactions on Industrial Electronics; vol. 50; No. 5; Oct. 2003; 20 Pages.
Keogh; Power Factor Correction Using the Buck TopologyEfficient Benefits and Practical Design Considerations; Texas Instruments; Reproduced from Texas Instruments Power Supply Design Seminar; SEM1900; Topic 4; TI Literature No. SLUP264; 2010; 36 Pages.
Tse, et al.; "A Family of PFC Voltage Regulator Configurations with Reduced Redundant Power Processing;" IEEE Transactions on Power Electronics; vol. 16; No. 6; Nov. 2001; 9 Pages.
Vorperian; "Quasi-Square-Wave Converters: Topologies and Analysis;" IEEE Transactions on Power Electronics; vol. 3; No. 2; Apr. 1, 1988; 9 Pages.
Wu, et al.; Design Considerations of Soft-Switched Buck PFC Converter with Constant On-Time (COT) Control; IEEE Transactions on Power Electronics; vol. 26; No. 11; Nov. 2011; 9 Pages. PCT International Search Report and Written Opinion dated Aug. 28, 2014 for International Application No. PCT/US2014/033267; 10 Pages.
U.S. Appl. No. 14/758,033; Part 1 of 3; 100 Pages.
U.S. Appl. No. 14/758,033; Part 2 of 3; 100 Pages.
U.S. Appl. No. 14/758,033; Part 3 of 3; 187 Pages.
U.S. Appl. No. 14/837,616, filed Aug. 27, 2015, Briffa, et al.
U.S. Appl. No. 14/823,220, filed Aug. 11, 2005, Barton, et al.

PCT International Search Report and Written Opinion dated Sep. 21, 2015 corresponding to International Application No. PCT/ US2015/039197; 8 Pages.
U.S. Appl. No. 14/934,760, filed Nov. 6, 2015, Briffa, et al.
U.S. Appl. No. 14/920,031, filed Oct. 22, 2015, Briffa, et al.
U.S. Appl. No. 14/968,045, filed Dec. 14, 2015, Perreault et al.
U.S. Appl. No. 14/974,563, filed Dec. 18, 2015, Perreault et al.
U.S. Appl. No. 14/975,742, filed Dec. 19, 2015, Perreault et al.

Non-Final Office Action dated Oct. 3, 2016; for U.S. Appl. No. 14/758,033; 28 pages.
U.S. Appl. No. 15/290,402, filed Oct. 11, 2016, Perreault, et al.
U.S. Appl. No. 15/287,068, filed Oct. 6, 2016, Briffa, et al.
U.S. Appl. No. 15/354,170, filed Nov. 17, 2016, Briffa, et al.
U.S. Appl. No. 14/035,445, filed Sep. 24, 2013, Perreault.
U.S. Appl. No. 14/401,981, filed Nov. 18, 2014, Perreault.
U.S. Appl. No. 14/416,654, filed Jan. 23, 2015, Perreault, et al.
U.S. Appl. No. 14/619,737, filed Feb. 11, 2015, Perreault, eta al. U.S. Appl. No. 14/435,914, filed Apr. 15, 2015, Perreault, et al. U.S. Appl. No. 14/758,033, filed Jun. 26, 2015, Perreault, et al. Zhang et al., "Single-Stage Input-Current-Shaping Technique with Voltage-Doubler-Rectifier Front End;" Proceedings IEEE Transactions on Power Electronics, vol. 16, No. 1; Jan. 2001; 9 Pages. U.S. Appl. No. 15/149,491, filed May 9, 2016, Perreault, et al. U.S. Appl. No. 15/585,676, filed May 3, 2017, Giuliano, et al. Response to Office Action dated Jul. 1, 2016 for U.S. Appl. No. 14/708,903; Response filed on Jan. 3, 2017; 10 pages.
PCT International Preliminary Report on Patentability for PCT/ US2014/033267 dated Oct. 22, 2015; 9 Pages.
PCT International Preliminary Report on Patentability for PCT/ US2015/039197 dated Jan. 12, 2017; 7 Pages.
Han, et al.; "A New Approach to Reducing Output Ripple in Switched-Capacitor-Based Step-Down DC-DC Converters;" IEEE
Transactions on Power Electronics; vol. 21; No. 6; Nov. 2006; 8 pages.
Lei, et al.; "Analysis of Switched-Capacitor DC-DC Converters in Soft-Charging Operation;" $14^{\text {th }}$ IEEE Workshop on Control and Modeling for Power Electronics; Jun. 23, 2013; 7 pages.
Linear Technology Data Sheet for Part LTC3402; "2A, 3MHz Micopower Synchronous Boost Converter;" 2000; 16 pages.
Makowski, et al; "Performance Limits of Switched-Capacitor DCDC Converters;" IEEE PESC'95; $26^{\text {th }}$ Annual Power Electronics Specialists Conference; vol. 2; Jul. 1995; 7 pages.
Meynard, et al.; "Multi-Level Conversion: High Voltage Choppers and Voltage-Source Inverters;" $23^{r d}$ Annual IEEE Power Electronics Specialists Conference; Jan. 1992; 7 pages.
Middlebrook; "Transformerless DC-to-DC Converters with Large Conversion Ratios;" IEEE Transitions on Power Electronics; vol. 3; No. 4; Oct. 1988; 5 pages.
Ng ; "Switched Capacitor DC-DC Converter: Superior Where the Buck Converter Has Dominated;" PhD Thesis, UC Berkeley; Aug. 17, 2011; 138 pages.
Pilawa-Podgurski, et al.; "Merged Two-Staged Power Converter Architecture with Soft Charging Switched-Capacitor Energy Transfer;" 2008 IEEE Power Electronics Specialists Conference; Jun. 15-19, 2008; 8 pages.
Texas Instruments Data Sheet for Part TPS54310; "3-V to $6-\mathrm{V}$ Input, 3-V Output Synchronous-Buck PWM Switcher with Integrated FETs (SWIFT);" dated Jan. 2005; 19 pages.
Umeno, et al.; "A New Approach to Low Ripple-Noise Switching Converters on the Basis of Switched-Capacitor Converters;" IEEE International Symposium on Circuits and Systems; Jun. 11-14, 1991; 4 pages.
Notice of Allowance dated Feb. 23, 2017 for U.S. Appl. No. 14/708,903; 20 pages.
Notice of Allowance dated Mar. 6, 2017 for U.S. Appl. No. 14/758,033; 12 pages.
Office Action dated Oct. 6, 2017 for U.S. Appl. No. 15/585,676, 27 pages.

* cited by examiner

FIG. 1

FIG. 2

Line Input Voltage and Current vs Time @ 240Vms

FIG. 3A

HF Buck Input Voltage and Current vs. Time @ 240Vms

FIG. 3B

HF Buck Input Voltage and Current vs Time @ 240Vms

FIG. 3C

Line Input Voltage and Current vs Time @ 240Vms

FIG. 3D

HF Buck Input Voltage and Current vs Time @ 120Vms

FIG. 3E

HF Buck Input Voltage and Current vs Time @ 120Vms

FIG. 3 F

FIG. 4

FIG. 5

FIG. 6

FIG. 7

FIG. 8

FIG. 9

FIG. 10

FIG. 11

HIGH-FREQUENCY, HIGH DENSITY POWER FACTOR CORRECTION CONVERSION FOR UNIVERSAL INPUT GRID INTERFACE

CROSS REFERENCE TO RELATED APPLICATION

This application claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Application No. 62/020,472 filed Jul. 3, 2014, which application is incorporated herein by reference in its entirety.

BACKGROUND

As is known in the art, power converters for supplying dc loads from a single-phase ac grid are used to power many electronic systems. Typical designs must operate on ac input voltage having a relatively wide range (e.g., 85-264 Vrms), and provide a (preferably regulated) dc output. Some applications require an isolated low-voltage dc output (e.g., 24 V). The efficiency of a power converter is also important for many applications (e.g., $>95 \%$ for a non-isolated output or $90-95 \%$ for isolated conversion to low voltage), as is ac line power factor (e.g., >0.9 or >0.95).

Conventional power converters typically operate at relatively low switching frequencies (typically on the order of 200 kHz or below) with associated low power densities (-10 $\mathrm{W} / \mathrm{in}^{3}$ or below). Moreover, at such switching frequencies, the magnetic energy storage components and filters needed for power converters may be relatively large and expensive. Thus, the size and cost of conventional power converters is often dominated by the requirements of the necessary magnetic components.

SUMMARY

In accordance with the concepts described herein, it has been recognized that there is a need for new power electronics technologies that can meet the requirements of practical applications at far lower size and cost than is presently achievable. To achieve these goals, new circuit designs are disclosed herein. Such designs can operate at high frequencies and thus utilize passive energy storage components which are relatively small compared with the size of storage components used in conventional systems. This disclosure describes high-frequency power converter designs that may be well-suited to systems operating at relatively high power levels (e.g., >100 W) from ac universal input voltage. Circuits disclosed herein can provide one or more of the following advantages: low-voltage isolated outputs, high efficiency, and/or power factor while at the same time providing large reductions in the physical size of circuits.

According to one aspect of the disclosure, a circuit comprises a reconfigurable rectifier having an input port configured to receive an alternating current (ac) input signal and first, second, and third output ports, wherein in a first configuration the reconfigurable rectifier is configured to deliver power at the first output port and in a second configuration the reconfigurable rectifier is configured to deliver power to at least the second output port; a voltage balancer having first and second ports, with the first and second ports coupled to the second and third output ports of the reconfigurable rectifier and configured to balance the voltage at the first and second ports; a first converter having an input coupled to the first port of the voltage balancer and
having an output at which a first converted voltage signal is provided; and a second converter having an input coupled to the second port of the voltage balancer and having an output at which a second converted voltage signal is provided.
In some embodiments of the circuit, in the second configuration, the reconfigurable rectifier is configured to deliver power to the second output port, wherein the voltage balancer is configured to transfer power received from the second output port of the reconfigurable rectifier such that first and second converters may process substantially equal power levels. In other embodiments, in the second configuration, the reconfigurable rectifier is configured to deliver power to the second and third output ports in alternating half ac cycles, wherein the voltage balancer is configured to transfer power received from the second and third output ports of the reconfigurable rectifier such that first and second converters may process substantially equal power levels.

In various embodiments, the circuit further comprises at least one configuration switch having a first state to place the reconfigurable rectifier in the first and a second state to place the reconfigurable rectifier in a second configuration. The circuit may include a controller, wherein in response to a value of the ac input signal, the controller places the configuration switch in the first or second state.

In certain embodiments of the circuit, the first and second converters are provided as buck converters. For example, the first converter may be a provided as a resonant-transition buck converter and the second converter may be provided as an inverted resonant-transition buck converter.

In some embodiments, the circuit further comprises an energy buffer network having an input coupled to the outputs of the first and second converters and at least one energy storage element (e.g., a capacitor), the energy buffer circuit network configured to provide buffering of twice-line-frequency energy. The outputs of the first and second converters can be connected such that the energy buffer circuit appears across the sum of the output voltages of the first and second converters. In certain embodiments, the energy buffer circuit network comprises three capacitors connected in a delta fashion.

BRIEF DESCRIPTION OF THE DRAWINGS

The concepts, structures, and techniques sought to be protected herein may be more fully understood from the following detailed description of the drawings, in which:

FIG. 1 is a block diagram of a power converter system architecture;

FIG. 2 is a schematic of an illustrative power converter;
FIGS. 3A-3F are a series of plots of voltage vs. time illustrating the operation of a circuit that can be used as a power converter;

FIGS. 4-6 are a series of schematic diagrams showing additional circuits that may be used within a power converter;

FIGS. 7 and $\mathbf{8}$ are schematic diagrams showing circuits that may be used within a voltage balancer; and

FIGS. 9-12 are schematic diagrams showing additional circuits that may be used within a power converter.

The drawings are not necessarily to scale, or inclusive of all elements of a system, emphasis instead generally being placed upon illustrating the concepts, structures, and techniques sought to be protected herein.

DETAILED DESCRIPTION

Before proceeding with a description of the architecture, systems, circuits and techniques described herein, some
introductory concepts are explained. If a power converter draws energy from wide-input-range ac signal and provides low-voltage output dc, the converter system can be viewed as having two functional aspects. The first is a so-called "Power Factor Correction" (PFC) function, which refers to the ability of the circuit to draw energy from the wide-range ac input at high power factor, buffer the required energy and provide it for use. The second is an isolation, transformation, and regulation function. This includes providing electrical isolation between an ac input and a dc output, transforming whatever (usually large, e.g. 400 V) voltage is obtained from PFC to the (usually low, e.g., 24 V) output voltage, and regulating the output voltage in the face of load variations. Such a converter may be implemented using a "two-stage" architecture having a PFC stage and an isolation stage, with an energy buffer provided between the two stages. Alternatively, the PFC and isolation stages may partially or fully merge these two functions (i.e. a single set of circuitry may perform both of these functions.

The concepts, systems, circuits and techniques disclosed herein can reduce the required size of a power converter through substantial (e.g., $>10 x$) increases in switching frequency relative to existing power converters, while maintaining high efficiency. It should also be appreciated that circuits designed using the concepts disclosed herein can be used to operate at lower frequencies with very high efficiency. Frequency increases can particularly benefit the size of magnetic components (e.g., inductors and transformers) that contribute substantially to converter size.

Achieving miniaturization may require careful attention to loss and parasitic effects that traditionally limit operation. Described herein are concepts, circuit architectures and topologies that take such effects into consideration. For example, with PFC circuitry interfacing to a high-voltage grid, it has been recognized that significant operational advantages can be gained by addressing switching loss through zero-voltage switching (ZVS) or near-ZVS operation. Even with advanced device types, high-efficiency conversion at greatly increased frequencies (e.g., above 1 MHz) generally requires that the high-voltage switches be turned on at relatively low voltage (ideally "zero" voltage) so as to dissipate only a relatively small amount of the energy stored in the device capacitances. Thus, the present disclosure includes circuit designs that provide ZVS or near-ZVS operation.

In addition to the benefits of ZVS soft switching, it has been recognized that in accordance with the concepts described herein parasitic effects may place constraints on switching frequency. In particular it has been recognized that at increased operating frequencies, the capacitances of highvoltage devices may become a design constraint

As will become apparent from the description provided herein, the disclosure addresses these constraints through multiple features. First, circuit topologies that naturally operate with relatively small inductances and large capacitances (e.g., with low characteristic impedance) are utilized. Such topologies enable use of higher operating frequencies than would otherwise be possible. This, in part, suggests topologies that limit device voltages to as low values as possible, thereby minimizing voltage and increasing current (reduced characteristic impedance, Z_{0}). This drive towards topologies with low voltage stress is further driven by semiconductor device considerations: the capacitances of high-voltage devices tend to be intrinsically worse than those of low-voltage devices for a given power handling capability, such that the devices in high-voltage-stress designs place greater capacitive constraints on frequency
than devices in lower-voltage-stress designs. Thus, some implementations disclosed herein utilize semiconductor devices having relatively low capacitances for a given voltage and current carrying capability (including GaN and SiC devices, when sufficiently economical from a system perspective).

Various circuits described herein utilize resonant-transition buck converters topologies. Resonant-transition buck converters can operate with high current ripple in the inductor and minimum transistor voltage stress, yielding a high achievable switching frequency and small inductor size. Moreover, while such converters operate with ZVS or near-ZVS soft switching over a $2: 1$ input voltage range, they can maintains high efficiency (with loss of ZVS but still low-loss switching) over an input voltage range of approximately $3: 1$.

The disclosure includes architectures that are reconfigurable such that the operating range of the individual components can be reduced, enabling better selection of components and operating ranges; and a reduction in the voltages (and ideally, minimizing the voltages) applied to individual power stage elements, enabling increases in frequencies as described above.

Referring to FIG. 1, a system architecture $\mathbf{1 0}$ can be used within a power conversion system to provide PFC functionality in addition to isolation, transformation, and regulation. The illustrative architecture 10 includes a reconfigurable rectifier 12, a voltage balancer 14 , a plurality of converters (with two converters $16 a$ and $16 b$ being shown in this example), an energy buffer network 18, a power combination and isolation network 20, and a controller 22. The various architecture elements 12-22 may be coupled as shown or in any other suitable arrangement.

Reconfigurable rectifier 12 is provided having an input port 24 configured to receive an ac input signal (herein denoted $\mathrm{V}_{i n}$ and sometimes referred to as a "ac line voltage"), and having a plurality of output ports 26 (with three output ports $26 a-26 c$ shown in this example). As used herein, the term "port" refers to a pair of terminals (e.g., positive and a negative voltage terminals). A given terminal may be shared among two or more ports. For example, the three output ports $\mathbf{2 6 a - 2 6} c$ may correspond to different combinations of only three distinct terminals, as shown.
The reconfigurable rectifier $\mathbf{1 2}$ receives an ac input signal at input port 24 and delivers power to one or more of the output ports 26 according to its instant configuration. For example, in some embodiments, the reconfigurable rectifier 12 supports two distinct configurations, wherein in a first configuration, the reconfigurable rectifier $\mathbf{1 2}$ delivers power continuously at a first output port $26 a$ and, in a second configuration, the reconfigurable rectifier $\mathbf{1 2}$ delivers power to the second port $26 b$ for a half line cycle, and to the third output port $\mathbf{2 6} c$ for a different half line cycle. Various other configurations may be supported as discussed further below.
The reconfigurable rectifier $\mathbf{1 2}$ includes a switching element (referred to herein as a "configuration switch") having a first state to place the reconfigurable rectifier in a first configuration and a second state to place the reconfigurable rectifier in a second, different configuration. The configuration switch can be driven by a controller 22, which may be implemented as an application specific integrated circuit (ASIC) or in any other suitable form.

In certain embodiments, the controller 22 is configured to receive at least a portion of the ac input signal ($\mathrm{V}_{i n}$) and in response thereto to set the state of reconfigurable rectifier 12 based upon characteristics of the ac signal (e.g. a voltage amplitude level, or "voltage level," associated the ac input
signal). For example, the controller may place the reconfigurable rectifier 12 into a first configuration state if a peak ac line voltage exceeds a predetermined threshold value (e.g., 200V) and may place the reconfigurable rectifier 12 into a second configuration state otherwise (e.g. if the peak ac line voltage is below a predetermined threshold).

It will be appreciated the use of a reconfigurable rectifier 12 can reduce (and ideally, minimize) voltage stress and operating range within subsequent conversion elements, such as converters 16.

The voltage balancer $\mathbf{1 4}$ is optional in some embodiments. Voltage balancer 14 includes an input coupled to the reconfigurable rectifier 12 and a plurality of outputs coupled to respective ones of the plurality of converters 16 . In the example shown, an input of the voltage balancer 14 is coupled to the three output ports $26 a-26 c$ of reconfigurable rectifier 12, and two voltage balancer outputs $28 a$ and $28 b$ are coupled to converters $16 a$ and $16 b$, respectively. The voltage balancer $\mathbf{1 4}$ is configured to balance power received at the input across the first and second outputs. For example, if the reconfigurable rectifier $\mathbf{1 2}$ alternates between delivering power at its second and third output ports $\mathbf{2 6} b, \mathbf{2 6} c$, the voltage balancer may balance the received power to continuously deliver an even amount of power at both its output ports $28 a, 28 b$ (and thus to each of the converters $16 a, \mathbf{1 6} b$).

The converters $16 a, 16 b$ receive rectified signals from the voltage balancer 14 (or directly from the reconfigurable rectifier 12) and provide (at outputs thereof), a desired output voltage (i.e. an output voltage signal having an output voltage level suitable for the needs of a particular application). As noted above, in some embodiments, the converters $16 a, 16 b$ are provided as resonant-transition buck converters. In certain embodiments, two converters $16 a, 16 b$ are provided in a so-called stacked arrangement, in which a first converter $16 a$ is a provided as a resonant-transition buck converter and a second converter $16 b$ is provided as an inverted resonant-transition buck converter. It should be appreciated that other topologies could be used for the converters $16 a, 16 b$, such as boost or buck-boost topologies.

The energy buffer network 18 has an input coupled to the outputs of the converters $16 a, 16 b$ and at least one energy storage element, such as a capacitor. In some embodiments, the energy buffer network 18 comprises a "capacitor stack"-i.e., a set of one or more capacitors in which line-frequency energy is buffered (they may or may not comprise a physical "stack"). In operation, the converters $16 a, 16 b$ can operate at high frequency, drawing energy from an ac grid and charging the capacitors within the energy buffer network 18. The energy buffer network 18, in turn, provides buffered energy to subsequent stages.

The power combining and isolation network 20, which may not be included in all embodiments, combines power from multiple energy buffer outputs (which may corresponding to multiple "stacked" capacitors) into a single output. The network 20 may also provide conversion, isolation, transformation, and/or regulation functionality. In some embodiments, network 20 may be advantageously realized using two isolated telecom "brick" power supplies having their outputs tied either in series or in parallel. In other embodiments, network $\mathbf{2 0}$ may be advantageously realized as a multiple-input, single-output isolated dc-dc converter.

Referring to FIG. 2, an illustrative circuit $\mathbf{4 0}$ has an input port 41 configured to receive an ac input signal $\left(\mathrm{V}_{i n}\right)$ and a reconfigurable rectifier $\mathbf{4 2}$ coupled to the input port 41 . A first converter $44 a$ and a second converter $44 b$, are coupled to the reconfigurable rectifier $\mathbf{4 2}$ in a manner which allows converters $\mathbf{4 4} a, \mathbf{4 4} b$ to receive and process different portions
of the signal provided from reconfigurable rectifier 42. An energy buffer network 46 is coupled to the converters $44 a$, $44 b$ and to an output port 80 to provide a regulated dc output voltage ($\mathrm{V}_{\text {out }}$). It will be appreciated that the circuit 40 utilizes portions of the architecture 10 from FIG. 1 and may be used, for example, as a PFC stage in a power converter.

In the illustrative embodiment of FIG. 2, the reconfigurable rectifier $\mathbf{4 2}$ comprises a full bridge rectifier having a configuration switch 48 coupled thereto to selectively enable use of a third output terminal. In particular, the reconfigurable rectifier 42 includes first and second input terminals $50 a$ and $50 b$ (which may correspond to input port 41); first, second, and third output terminals $\mathbf{5 2} a-52 c$; a first diode $54 a$ coupled in a forward direction between the first input terminal $50 a$ and the first output terminal $52 a$; a second diode $54 b$ coupled in a forward direction between the second input terminal $\mathbf{5 0} b$ and the first output terminal $\mathbf{5 2} a$; a third diode $\mathbf{5 4} c$ coupled in a reverse direction between the first input terminal $50 a$ and the third output terminal $\mathbf{5 2} c$; a fourth diode $\mathbf{5 4} d$ coupled in a reverse direction between the second input terminal $\mathbf{5 0} b$ and the third output terminal $\mathbf{5 2} c$; and a configuration switch 48 coupled between the second input terminal $\mathbf{5 0} b$ and the second output terminal $\mathbf{5 2} b$.

The reconfigurable rectifier $\mathbf{4 2}$ may further include a first smoothing capacitor $56 a$ coupled between the first and second output terminals $\mathbf{5 2} a$ and $\mathbf{5 2} b$, and a second smoothing capacitor $\mathbf{5 6} b$ coupled between the second and third output terminals $\mathbf{5 2} b$ and $\mathbf{5 2} c$, as shown. The capacitance values of capacitors $\mathbf{5 6 a}, \mathbf{5 6} b$ are selected in accordance with the expected needs of a particular application and the specific capacitor characteristics are selected, at least in part, based upon the expected voltage levels and signal fluctuations to which the capacitors will be exposed. In particular, capacitors $\mathbf{5 6} a$ and $\mathbf{5 6} b$ may be selected to filter/bypass the switching frequency components of currents from converters $44 a$ and $44 b$ (with low impedance and small voltage ripple at those frequencies), while providing relatively high impedance to line-frequency currents from the reconfigurable rectifier 42 (with substantial voltage ripple at line frequency).

The configuration switch 48 may be provided as any suitable type of switch (e.g. provided from one or more switching elements). In some embodiments, the switch 48 is provided as a low-frequency, low-loss switch. In the illustrative embodiment of FIG. 2, the configuration switch 48 comprises a pair of field-effect transistor (FET) switches $\mathbf{6 0} a, \mathbf{6 0} b$ arranged in series between nodes $\mathbf{5 0} b$ and $\mathbf{5 2} b$ (the terms "node" and "terminal" are used interchangeably herein). Alternatively, a relay, latching relay, solid-state relay, Triac, or 4-quadrant switch could be used.

Gate terminals of FET switches $\mathbf{6 0 a}, \mathbf{6 0} b$ may be coupled to a switch control terminal $\mathbf{6 2}$ which in turn may be coupled to a controller such as controller 22 described above in conjunction with FIG. 1. The controller (or other suitable circuit) provides gate bias signals to switch the FETs $60 a$, $60 b$ between their conductive and non-conductive states corresponding, respectively, to "ON" (or "closed") and "OFF" (or "open") states of configuration switch 48. In it's OFF state, configuration switch 48 provides a high impedance path (ideally an open circuit impedance path) between nodes $\mathbf{5 0} b$ and $\mathbf{5 2} b$. Conversely, its ON state, configuration switch 48 provides a low impedance path (ideally a shorts circuit impedance path) between nodes $\mathbf{5 0} b$ and $\mathbf{5 2} b$. As noted above, configuration switch 48 may be driven by any suitable means. For reasons which will become apparent from the description herein below, in some embodiments, the configuration switch $\mathbf{4 8}$ is placed into its open state when
the peak ac line voltage exceeds 200 V (or some other predetermined threshold voltage), and is placed into its a closed state otherwise.

Converters $\mathbf{4 4} a, 44 b$ may be provided with their inputs stacked in series, as shown. In particular, the converter $44 a$ is provided having an input port corresponding to nodes $\mathbf{5 2} a$ and $\mathbf{5 2 b}$ and an output port corresponding to nodes $\mathbf{6 4}$ and 66, whereas converter $44 a$ is provided having an input port corresponding to nodes $\mathbf{5 2} b$ and $\mathbf{5 2} c$ and an output port corresponding to nodes 66 and 68 .

The illustrative converter $44 a$ comprises an active switch $70 a$ and an inductor $72 a$ serially coupled between nodes $52 a$ and 64, and a diode $74 a$ having an anode terminal coupled to nodes $52 b$ and 66 and a cathode terminal coupled between the active switch $70 a$ and the inductor $72 a$, as shown. The illustrative converter $44 b$ includes an active switch $70 b$ and an inductor $\mathbf{7 2} b$ coupled in series between nodes $\mathbf{5 2} c$ and $\mathbf{6 8}$, and a diode $74 b$ having a cathode terminal coupled to nodes $52 b$ and 66 and an anode terminal coupled between the active switch $\mathbf{7 0} b$ and the inductor $\mathbf{7 2} b$, as shown. It will be appreciated that converters $\mathbf{4 4} a, 44 b$ both utilize a resonanttransition buck converter design, with the converter $44 b$ being inverted relative to converter $\mathbf{4 4} a$. The inductors $72 a$, $72 b$ may be selected to provide approximately 100% ripple ratio at the desired switching frequency range and to ring with diode $74 b$ and switch capacitance for zero-voltage switching in a time significantly shorter than the desired switching period for an operating point. Illustrative designs of such resonant-transition buck converters (either inverted or noninverted) are described in Lim, et. al. "Two-Stage Power Conversion Architecture Suitable for Wide Range Input Voltage", IEEE Transactions on Power Electronics, Vol. 30, No. 2, pp. 805-816, February 2015.

In this illustrative embodiment, converters $44 a, 44 b$ are coupled across a single output port formed by energy storage elements $\mathbf{7 6} a, \mathbf{7 6} b$ (here shown as capacitors 76 $a, 76 b$) coupled between nodes $\mathbf{6 4}$ and 68 . In other embodiments, each converter provides a separate output port. In such embodiments, a power combining circuit may be included to combine the individual converter outputs.

In some embodiments, capacitors $7 \mathbf{6} a$ and $7 \mathbf{7 6} b$ may be selected to principally filter the switching frequency components of the outputs of buck converters $44 a$ and $44 b$, while capacitor 77 (at higher voltage and higher energy storage capability) may provide buffering of twice-line-frequency energy and/or holdup energy to power the system output in the event of a temporary interruption in line power. In other embodiments, these duties-twice-line-frequency energy buffering, holdup energy and switching ripple filteringmay be distributed among the three capacitor elements 76a, 76 b, and 77. It is also noted that while single capacitors 76 a, $76 b$, and 77 are shown, these may each be realized as paralleled capacitors of similar and/or different types, including ceramic capacitors, film capacitors and electrolytic capacitors. Electrolytic capacitors may be preferable for energy buffering, while film and ceramic capacitors may be preferred for switching ripple filtering.

The illustrative energy buffer network 46 includes an input port corresponding to nodes $\mathbf{6 4}$ and $\mathbf{6 8}$, an output port 80 corresponding to nodes $78 a$ and $78 b$, and a plurality of stacked output capacitors 76 (with two output capacitors $76 a$ and $76 b$ shown in this example). A first output capacitor $76 a$ may be coupled between nodes 64 and 66 and a second output capacitor $76 b$ coupled between nodes 66 and 68 . The energy buffer network 46 may also include a capacitor 77 coupled in parallel with the output capacitors 76, as shown.

In various embodiments, capacitor 77 has a substantially larger capacitance compared to capacitors 76a, 76 b.

The minimum size of capacitors $76 a$ and $76 b$ may be selected such that they can pass the switching ripple current from inductors $\mathbf{7 2} a$ and $\mathbf{7 2} b$ with small switching voltage ripple. In embodiments when capacitor 77 provides the dominant energy buffering element, its minimum size may be selected to provide buffering of the twice-line-frequency energy with relatively small voltage ripple and to provide a sufficient rms current rating to pass the twice-line-frequency current components. Twice-line-frequency energy may be, for example, on the order of $\mathrm{P}_{\text {average }} /\left(2 \pi^{*} \mathrm{f}_{\text {line }}\right)$, where $\mathrm{P}_{\text {average }}$ is the maximum average system output power and $\mathrm{f}_{\text {line }}$ is the minimum ac line frequency) with relatively small voltage ripple and has a sufficient rms current rating to pass the twice-line-frequency current components. In applications where holdup energy is required, capacitor 77 may be sized such that it can provide the desired output power for the required duration with acceptable voltage droop for the following stage. In cases where both capacitors $76 a$ and $76 b$ provide energy buffering, the net storage of the three capacitors $76 a, 76 b$, and 77 can be sized according to the above guidelines.
It should be appreciated that capacitors $76 a, 76 b$, and/or 77 may be implemented either as part of the converter circuit, as part of an energy buffer circuit, or both.

The circuit 40 can operate to provide ac to dc power conversion over a wide range of peak ac input voltages (e.g., $85-264 \mathrm{Vrms}$) and is suitable for operation in the mega-Hertz (MHz) frequency range.

The instantaneous operation of the converters $\mathbf{4 4} a, \mathbf{4 4} b$ depends upon the reconfigurable rectifier 42, which in turn depends on the state of the configuration switch 48 . With the configuration switch 48 in the open state (e.g., for operation with ac line voltages above predetermined threshold volt-age-e.g. 200 V), the reconfigurable rectifier 42 functions as a full-wave rectifier delivering power across the first and third output terminals $52 a, 52 c$ (which may correspond to first output port). Thus, the two converters $\mathbf{4 4 a , 4 4 b}$ draw the same current from the input (sharing input voltage equally) and deliver the same current to the combined output (i.e., across terminals 64, 68).

With the configuration switch 48 in the closed state (e.g., for operation with ac line voltages less than or equal to the predetermined threshold voltage-e.g. 200 V), the reconfigurable rectifier 42 functions similar to a voltage doubler. The top converter $44 a$ operates when the ac line voltage is positive and the bottom converter $44 b$ operates when the ac line voltage is negative. Thus, each converter $\mathbf{4 4} a, 44 b$ operates to process full power for approximately half the line cycle.

As a consequence of this circuit reconfiguration, the HF converters $44 a, 44 b$ can be optimized for a narrower operating range (voltage and currents ranges) and can operate at lower voltage compared to conventional approaches. These factors both facilitate scaling the power stage to high frequency. In particular, the converters $\mathbf{4 4} a, \mathbf{4 4} b$ can be rated for a peak input voltage of half the maximum ac input voltage, and for an rms input current that is only 0.707 times the maximum rms ac input current. In one example, with peak input voltages of each of the stacked converters $\mathbf{4 4}, \mathbf{4 4 b}$ below 200 V , high efficiency can be achieved for output of the converters $\mathbf{4 4} a, 44 b$, each in the range of $65-85 \mathrm{~V}$, for a total output voltage selected in the range of $130-170 \mathrm{~V}$ (where the actual output voltage may be selected based on desired output voltage and input power factor).

The pair of converters $44 a, 44 b$ can operate as a softswitched HF power stage. Combined with the circuit reconfiguration, the stacked arrangement of the converters $44 a$, $44 b$ reduces the individual input voltages of the converters (e.g., to $<200 \mathrm{~V}$ each) for "universal" ac input voltage (e.g., input voltage in the range $85-264$ Vrms). Moreover, the topology used for the converters $44 a, 44 b$ can operate with minimum voltage stress and using relatively small magnetic components at high efficiency. Each of these factors benefits achieving greatly increased frequency.

The size of the electrical components (e.g., capacitors and inductors) used with the circuit 40 may be selected based on the desired PFC output voltage (Vout) and the required input power factor. Line-frequency energy and holdup energy buffering is done by the output capacitors, and required energy buffer capacitor size can be reduced by allowing a greater swing across the output capacitor.

FIGS. 3A-3F illustrate the operation of circuit 40 (FIG. 2) for various ac input voltages. Each of FIGS. 3A-3F shows a graph of electrical characteristics (voltage and current) at a particular node (or pair of nodes) with the circuit. Within each of the FIGS. 3A-3F, time is indicated by the x axis, voltage is indicated by a respective voltage waveform $90 a$ $90 f$ and by the left-side y axis, and current is indicated by a respective current waveform $\mathbf{9 2} a-92 f$ and by the right-side y axis.

FIG. 3A illustrates voltage $90 a$ and current $92 a$ of a 240 Vrms ac input signal over one line cycle (60 Hz). The voltage $90 a$ and current $92 a$ may correspond to measurements taken at input port 41 of FIG. 2. FIGS. 3B and 3C illustrate voltage and current delivered to the top converter $44 a$ and the bottom converter $44 b$, respectively, in response to the input signal of FIG. 3A when the configuration switch 48 is open. With the configuration switch open, each converter $44 a, 44 b$ operates at 120 Hz conducting every halfline cycle, as shown.

FIG. 3D illustrates voltage $\mathbf{9 0 d}$ and current $\mathbf{9 2} d$ of a 120 Vrms ac input signal over one ac cycle (60 Hz). FIGS. 3E and 3 F illustrate voltage and current delivered to the top converter $44 a$ and the bottom converter $44 b$, respectively, in response to the input signal of FIG. 3D when the configuration switch 48 is closed. With the configuration switch closed, the top converter $44 a$ conducts when the line voltage is positive, and the top converter $44 b$ conducts when the line voltage is negative, as shown.

As shown in FIGS. 3A-3F, when operating with the configuration switch 48 closed (e.g., with a 120 Vrms input), the converters $\mathbf{4 4} a, \mathbf{4 4} b$ may be required to process twice the peak power over a line cycle compared to operation with the configuration switch 48 open (e.g., with a 240 Vrms input). This is because the converters $\mathbf{4 4} a, \mathbf{4 4} b$ each operate only half the time. Thus, the converters $\mathbf{4 4} a, \mathbf{4 4} b$ must designed for a larger peak power, which may require using larger component sizes (e.g., larger-volume inductors 72a, 72b).

Referring to FIG. 4, a circuit $\mathbf{8 2}$ is similar to circuit $\mathbf{4 0}$ of FIG. 2, but includes a voltage balancer 84 coupled between a reconfigurable rectifier $\mathbf{8 5}$ and stacked converters $88 a$, $\mathbf{8 8} b$. In particular, the voltage balancer 84 may be coupled to three output terminals $\mathbf{8 6} a-\mathbf{8 6} c$ of the reconfigurable rectifier 85, as shown.

The voltage balancer 84 is configured to distribute energy to both converters $\mathbf{8 8} a, \mathbf{8 8} b$ (preferably equally) when a configuration switch 87 is closed. With this configuration, the converters $\mathbf{8 8} a, \mathbf{8 8} b$ can operate during the same fraction of the line cycle and draw the same current regardless of whether the configuration switch 87 is open or closed.

Thus, the peak power rating of the converters $\mathbf{8 8} a, \mathbf{8 8} b$ can be reduced compared to circuit design of FIG. 2. Example implementations of a voltage balancer 84 are shown in FIGS. 7 and $\mathbf{8}$ and described below in conjunction therewith.

FIG. 5 illustrates a circuit design for use in a power conversion system. One limitation of the circuit design of FIG. 2 is that one of the HF buck converters (i.e., converter $\mathbf{8 8} a$) has its active switch referenced to a so-called "flying node" (i.e., a node coupled to receive relatively highfrequency signals). This approach may limit the frequency or efficiency at which that converter can operate. The circuit design of FIG. 5 removes this limitation by using two "inverted" resonant-transition buck converters, both of which have their switches referenced to relatively slowly moving nodes. With this design, the HF stage has two separate outputs that must be combined, either by a dedicated non-isolated combing stage or by an isolation/transformation/regulation stage.
Turning to FIG. 5, an illustrative circuit $\mathbf{1 0 0}$ comprises an input port 102 configured to receive an ac input signal $\left(\mathrm{V}_{i n}\right)$; a reconfigurable rectifier $\mathbf{1 0 4}$ coupled to the input port 102; a first ("top") converter $\mathbf{1 0 6} a$ and a second ("bottom") converter $\mathbf{1 0 6} b$, both of which are coupled to the reconfigurable rectifier 102; and a power combining circuit 108 coupled to both converters $106 a, 106 b$ and configured to provide combined output voltage ($\mathrm{V}_{\text {out }}$) at an output port 110. It will be appreciated that the circuit 100 utilizes portions of the architecture 10 from FIG. 1 and may be used, for example, as a PFC stage in a power converter.

The reconfigurable rectifier 104, which has first, second, and third output terminals $\mathbf{1 1 2} a-112 c$, may be the same as or similar to the reconfigurable rectifier 42 of FIG. 2.

Both the top and bottom converters $\mathbf{1 0 6} a, 106 b$ in FIG. 5 maybe the same as or similar to the bottom converter $44 b$ of FIG. 2. That is, both converters $106 a, 106 b$ may utilize an inverted buck converter design, including an inverted reso-nant-transition buck converter.

The illustrative top converter $106 a$ includes a first output terminal 118 coupled to node $\mathbf{1 1 2} a$, a second output terminal 120, an energy storage element $122 a$ (here shown as a capacitor 122a) coupled between the first and second output terminals 118, 120, an active switch $114 a$ and an inductor $116 a$ coupled in series between nodes $112 b$ and 120 , and a diode $124 a$ having a cathode terminal coupled to node $\mathbf{1 1 2} a$ and an anode terminal coupled between the active switch $114 a$ and the inductor $116 a$, as shown.

The illustrative bottom converter $106 b$ includes a first output terminal $\mathbf{1 2 6}$ coupled to node $\mathbf{1 1 2} b$, a second output terminal 128, an energy storage element $\mathbf{1 2 2} b$ (here shown as a capacitor $\mathbf{1 2 2} b$) coupled between the first and second output terminals 126, 128, an active switch $114 b$ and an inductor $116 b$ coupled in series between nodes $112 c$ and 128, and a diode $\mathbf{1 2 4} b$ having a cathode terminal coupled to nodes $112 b$ and an anode terminal coupled between the active switch $114 b$ and the inductor $116 b$, as shown.

Thus, whereas the stacked converters $44 a, 44 b$ of FIG. 2 provide a single output port (i.e., across nodes 64 and 68), the converters $106 a$ and $106 b$ in FIG. 5 each provides a separate output, denoted Vc1 and Vc2, respectively. In circuit 100, capacitors $\mathbf{1 2 2} a$ and $\mathbf{1 2 2} b$ may thus provide both ripple frequency filtering and energy buffering, including twice-line-frequency energy buffering and providing holdup energy in the case of a temporary interruption of the ac line voltage.

The power combining circuit 108 is configured to combine the two converter outputs Vc1 and Vc2. The circuit 108
may also provide other functionality, such as buffering, isolation, transformation, and/or regulation. The power combining circuit 108 can be implemented using any suitable circuit design.

One approach to efficiently combining the two converter outputs is to use a switched-capacitor power combining circuit. Since relatively large capacitors must be already present in the system to satisfy holdup and line-frequency energy buffering requirement, a switched-capacitor power combining stage can be implemented with very high efficiency and negligible impact on size.

A second approach to combining the two converter outputs Vc 1 and Vc 2 is to realize the circuit $\mathbf{1 0 8}$ as an isolation/transformation/regulation stage. Because the individual outputs Vc1, Vc2 can be selected to have voltages in the range below 75 V , one can realize the circuit 108 with a pair of standard high efficiency "brick" converters with their inputs connected to Vc1 and Vc2, respectively, and their outputs connected in series or parallel on the isolated output side to supply a voltage (Vout) at output port 110. Control can be realized through appropriate modulation of the current sharing and enable controls often provided in such converters. This design approach can thus take advantage of standardized high-volume converter designs for the second stage. This may even enable elimination of downstream conversion stages (e.g., to logic-level voltages) in some applications.

A third approach to implementing the power combining circuit 108 is to realize a true dual-input, single-output magnetic stage (e.g., including isolation). Such a design, when customized to the application, can achieve higher densities and efficiencies that are possible with standard "brick" style converters. Moreover, this approach is amendable to being realized at high frequencies using "integrated magnetics," in which multilayer transformers are printed as part of the circuit board.

Referring to FIG. 6, a circuit $\mathbf{1 3 0}$ is similar to circuit $\mathbf{1 0 0}$ of FIG. 5, but includes a voltage balancer 132 coupled between a reconfigurable rectifier 134 and two converters $136 a, 136 b$. As explained above in conjunction with FIG. 4, a voltage balancer 132 can be configured to distribute energy to both converters $\mathbf{1 3 6} a, \mathbf{1 3 6} b$ (preferably equally) in response to a first configuration of reconfigurable rectifier 134 (e.g. when a configuration switch is closed). Thus, in operation, both converters $\mathbf{1 3 6} a, \mathbf{1 3 6} b$ operate during the same fraction of the line cycle and draw the same current regardless of whether the configuration switch is open or closed and the peak power rating of the HF buck converters $136 a, 136 b$ can be reduced compared to the design of FIG 5.

FIGS. 7 and 8 show illustrative circuit designs that may be used within a voltage balancer, such as voltage balancer 84 in FIG. 4 and/or voltage balancer 132 in FIG. 6. It will be appreciated that while FIGS. 7 and 8 show switchedcapacitor voltage balancers, one may also utilize switched inductor voltage balancers, resonant switched capacitor voltage balancers, and other known balancer circuits.

Referring to FIG. 7, an illustrative circuit $\mathbf{1 4 0}$ comprises a first port $\mathbf{1 4 4}$ corresponding to terminals $\mathbf{1 4 2} a$ and $\mathbf{1 4 2} b$, a second port $\mathbf{1 4 6}$ corresponding to terminals $\mathbf{1 4 2} b$ and $\mathbf{1 4 2} c$, a first capacitor 148 coupled across the first port 144, a second capacitor 150 coupled across the second port 146, a first switch $152 a$ coupled to nodes $142 a$ and 154 , a second switch $\mathbf{1 5 2} b$ coupled to nodes $\mathbf{1 5 4}$ and $142 b$, a third switch $\mathbf{1 5 2} c$ coupled to nodes $\mathbf{1 4 2} b$ and $\mathbf{1 5 6}$, a fourth switch $\mathbf{1 5 2} d$ coupled to nodes 156 and $142 c$, and a third capacitor 155 coupled to nodes 154 and 156. Capacitance values can be
selected to provide the desired peak energy transfer rated at a desired switching frequency and efficiency in accordance with well-known design approaches for switched-capacitor converters, such as described in M. Seeman and S. Sanders, "Analysis and Optimization of Switched-Capacitor DC-DC Converters," IEEE Transactions on Power Electronics, vol. 23, no. 2, March 2008.

Each of the switches $\mathbf{1 5 2} a-152 d$ has an open state (i.e., a state in which a substantially open circuit impedance path exists between the switch terminals) and a closed state (i.e. a state in which a substantially short circuit impedance path exists between the switch terminals). The first and third switches $\mathbf{1 5 2} a$ and $\mathbf{1 5 2} c$ (collectively referred to as switch "A") may be configured to be opened and closed in unison. Likewise, the second and fourth switches $\mathbf{1 5 2} b$ and $152 d$ (collectively referred to as switch " B ") may be configured to be opened and closed in unison. The switches can be driven by any suitable means, such as via controller 22 shown in FIG. 1.

In one embodiment, switches A and B are operated in complementary fashion (i.e. when one is on the other is off), as shown in TABLE 1. The switches A and B may each be operated with 50% duty ratio. As a result, the third (or "flying") capacitor 155 shuffles charge from the first (or "top") capacitor $\mathbf{1 4 8}$ to the second (or "bottom") capacitor 150, or vice versa. For practice control reasons, all switches may be turned off for a least a portion of the duty cycle (sometimes referred to as "dead times").

TABLE 1

	Switch	
	A	B
State 1 State 2	Open Closed	Closed Open

The circuit 140 can function as a voltage balancer coupled between a reconfigurable rectifier and a pair of converters. In particular, the three terminals $\mathbf{1 4 2 a - 1 4 2 c}$ may be coupled to three output terminals of the reconfigurable rectifier. For example, the terminals $142 a, 142 b$, and $142 c$ may be coupled to terminals $86 a, 86 b$, and $86 c$ of FIG. 4, respectively. If the switching frequency of circuit 140 is significantly higher than ac input line frequency, a voltage level (Vtop) at the first port 144 will have approximately the same value in steady state as the voltage level (Vbot) at the second port 146. Thus, the circuit $\mathbf{1 4 0}$ can provide approximately equal voltages to both converters (e.g., converters $88 a$ and $88 b$ of FIG. 4) regardless of whether the configuration switch is open or closed.

The switching frequency of circuit 140 can be dynamically adapted over the line cycle and/or with power to maximize efficiency, and it can be entirely turned off when the configuration switch is open (e.g., when a signal having a voltage level above a predetermined threshold level is provided to the input of a reconfigurable rectifier such as reconfigurable rectifier 42 in FIG. 2).

FIG. 8 shows another illustrative circuit 160 that can be used within a voltage balancer. The illustrative circuit 160 comprises a first port 164 corresponding to terminals $162 a$ and $162 b$, a second port 166 corresponding to terminals $162 b$ and $162 c$, a first capacitor 168 coupled across the first port 164, a second capacitor 170 coupled across the second port 166, a first switch $172 a$ coupled to nodes $162 a$ and 174 , a second switch $\mathbf{1 7 2} b$ coupled to nodes $\mathbf{1 7 4}$ and $\mathbf{1 6 2} b$, a third switch $\mathbf{1 7 2} c$ coupled to nodes $\mathbf{1 6 2} b$ and $\mathbf{1 7 6}$, a fourth switch
$172 d$ coupled to nodes $\mathbf{1 7 6}$ and $\mathbf{1 6 2} c$, a third capacitor 178 coupled to nodes $\mathbf{1 7 4}$ and $\mathbf{1 7 6}$, a fifth switch $\mathbf{1 7 2} e$ coupled to nodes $162 a$ and 180 , a sixth switch $172 f$ coupled to nodes 180 and $\mathbf{1 6 2 b}$, a seventh switch $\mathbf{1 7 2} g$ coupled to nodes $\mathbf{1 6 2} b$ and 182, an eighth switch $172 h$ coupled to nodes 182 and $162 c$, and a fourth capacitor 184 coupled to nodes 180 and 182. These capacitor values may be selected for a given desired switching frequency (which may be in the tens to hundreds of kHz in many applications) based on well-known design principles as described above in conjunction with FIG. 7.

The interleaved circuit design shown in FIG. 8 has twice as many switches and drivers as the circuit $\mathbf{1 4 0}$ of FIG. 7, but has the advantage of requiring smaller overall capacitance and reducing the current ripple significantly, effectively decreasing the volume of input-side filters, such as EMI filters.

The four switches $\mathbf{1 7 2} b, \mathbf{1 7 2} d, \mathbf{1 7 2} e$, and $\mathbf{1 7 2} g$ (collectively referred to as switch "A") are may be configured to be opened and closed in unison. Likewise, the four switches $\mathbf{1 7 2} a, \mathbf{1 7 2} c, \mathbf{1 7 2} f$, and $\mathbf{1 7 2} h$ (collectively referred to as switch " B ") are may be configured to be opened and closed in unison. The two switches A and B may be operated in complementary fashion, as shown in TABLE 1 and as described above in conjunction with FIG. 7. In operation, the third and fourth capacitors 178 and 184 "shuffle" charge from the first capacitor 168 to the second capacitor 178, and vice versa. Each half of the circuit operates 180 degrees out of phase, which can cancel a current ripple in capacitors 168 and 170.

As with circuit 140 of FIG. 7, the circuit 160 can be coupled between a reconfigurable rectifier and a pair of converters, and the switching frequency of circuit 140 can be dynamically adapted over the line cycle and/or with power to maximize efficiency.

FIGS. 9 and 10 show how industry standard telecom converters (e.g., "brick" converters, "half-brick" converters, "quarter-brick" converters, "eighth brick" converters, etc.) can be used within a power combining and isolation circuit (e.g., circuit 20 of FIG. 1). Such converters have galvanic isolation, which allows the outputs to be coupled in series or parallel, depending on the desired output voltage and what is best available among such converters in the marketplace. For example, for a 100 W PFC converter, each output brick converter might be designed to operate at 50 W and a 5 V output. Depending on the application, the outputs of the brick converters could be coupled in such a way to obtain an output of 5 V and 20 A (outputs coupled parallel) or 10 V and 10 A (outputs coupled in series).

Referring FIG. 9, an illustrative circuit 190 includes a reconfigurable rectifier 192, a voltage balancer circuit 194, two converters $196 a$ and $196 b$, an energy buffer circuit 198, and a power combining and isolation circuit 200. The circuit portions 192-200 may be coupled as shown, or in any other suitable manner.

The power combining and isolation circuit 200 includes two isolated converters 202 and 204, which may be provided as standard telecom converters. A first isolated converter 202 includes a first input terminal 202 a, a second input terminal $\mathbf{2 0 2} b$, a first output terminal $\mathbf{2 0 2} c$, and a second output terminal 202d. A second isolated converter 204 includes a first input terminal 204a, a second input terminal 204b, a first output terminal 204c, and a second output terminal $\mathbf{2 0 4} d$. The isolated converter outputs are coupled in series, with the second output terminal $202 d$ of converter 202 coupled to the first output terminal $204 c$ of converter 204. The input terminals of the isolated converters 202, 204 can
be coupled such that each converter is fed from one of the converters $196 a, 196 b$, as shown.

The first output terminal $202 c$ of the converter 202 and the second output terminal $204 d$ of the converter 204 may correspond to the output port 206 of the circuit 190.

Referring to FIG. 10 in which like elements of FIG. 9 are shown having like reference designations, a circuit $\mathbf{2 1 0}$ includes two isolated converters 212 and 214, whose outputs may be coupled in parallel. A first isolated converter 212 includes a first input port 212 a, a second input port 212 b, a first output port $\mathbf{2 1 2} c$, and a second output port 212d. A second isolated converter 214 includes a first input port $\mathbf{2 1 4} a$, a second input port $214 b$, a first output port $\mathbf{2 1 4} c$, and a second output port $\mathbf{2 1 4} d$. The first output terminal $212 c$ of converter $\mathbf{2 1 2}$ may be coupled to the first output terminal $214 c$ of converter 214, and the second output terminal 212d of converter 212 may be coupled to the second output terminal $214 d$ of converter 214, as shown. An output port $\mathbf{2 1 6}$ of the circuit $\mathbf{2 1 0}$ corresponds to terminals $\mathbf{2 1 2}$ c/214 c and $\mathbf{2 1 2} \mathrm{d} / \mathbf{2 1 4} \mathrm{d}$. It is appreciated that connecting the isolated converter outputs in parallel effectively provides the converter with two different regulated output voltages that can be realized depending on the desired application.

FIG. 11 shows another circuit 220 that can be used within a power converter. The illustrative circuit $\mathbf{2 2 0}$ includes a reconfigurable rectifier 222, a voltage balancer 230, two converters $\mathbf{2 3 2} a$ and $\mathbf{2 3 2} b$, an energy buffer circuit 234, and a power combining and isolation circuit 236, which may be coupled as shown or in any other suitable manner.

It will be appreciated that the reconfigurable rectifier 222 utilizes a different design compared some of the circuits described above. For example, compared to the reconfigurable rectifier $\mathbf{4 2}$ of FIG. 2, the bottom two diodes $\mathbf{5 4} c, \mathbf{5 4} d$ are replaced by active switches $\mathbf{2 2 6} a, \mathbf{2 2 6} b$ (e.g., transistors) and two diodes $\mathbf{2 2 5} a, \mathbf{2 2 5} b$ are added that will conduct only when a configuration switch 228 is closed. In the embodiment show, a first diode $\mathbf{2 2 5} a$ is coupled between a first input terminal $227 a$ and a first terminal $228 a$ of the configuration switch 228, and a second diode $225 b$ is coupled between a second input terminal $227 b$ and the first terminal $228 a$ of the configuration switch 228.

One benefit of this design is that it reduces the number of diode drops in the power path from two to one when the configuration switch 228 is open. Because diodes $225 a$ and $225 b$ are only used when the configuration switch is closed (which may correspond to low-voltage ac input), these diodes can be rated for lower voltage stress compared to the diodes $224 a$ and $224 b$.
The active switches 226a, 226 b can be configured to operate at substantially the same frequency as the ac input signal (i.e., the line frequency) and can have their source voltage referenced to a stable voltage. In some embodiments, the active switches $226 a, 226 b$ are driven by a controller, such as controller 22 of FIG. 1. In particular, switch $226 a$ may be on during the negative half portion of the ac line cycle and switch $226 b$ may be on during the positive portion of the ac line cycle.

FIG. 12 shows another circuit 240 that can be used within a power converter. The illustrative circuit 240 includes a reconfigurable rectifier 242, two converters $244 a$ and $244 b$, and a power combining and isolation circuit 246, which may be coupled as shown or in any other suitable manner.

The illustrative reconfigurable rectifier $\mathbf{2 4 2}$ includes first and second input terminals $\mathbf{2 5 0} a$ and $\mathbf{2 5 0} b$ (corresponding to an input port 250); four output terminals 252a-252d; a first diode $254 a$ coupled in a forward direction between the first input terminal $250 a$ and the first output terminal 252a; a
second diode $\mathbf{2 5 4} b$ coupled in a forward direction between the second input terminal $250 b$ and the first output terminal $\mathbf{2 5 2} a$; a third diode $254 c$ coupled in a reverse direction between the first input terminal $250 a$ and the fourth output terminal $252 d$; a fourth diode $254 d$ coupled in a reverse direction between the second input terminal $250 b$ and the fourth output terminal $\mathbf{2 5 2 d}$; and a relay 248 having a first input terminal $\mathbf{2 5 6} a$ coupled to terminal $\mathbf{2 5 2} d$, a second input terminal $\mathbf{2 5 6} b$ coupled to terminal $\mathbf{2 5 2} a$, a first output terminal $\mathbf{2 5 8} a$ coupled to terminal $\mathbf{2 5 2} b$, and a second output terminal $\mathbf{2 5 8} b$ coupled to terminal $\mathbf{2 5 2} c$.

The relay $\mathbf{2 5 8}$ is configured to connect the converters $244 a$ either in series (as shown with the relay positions in FIG. 12) or in parallel. The series connection may be used for high voltage operation such as 240 Vac line voltage and the parallel connection may be used for low voltage operation such as 120 Vac . This eliminates the need for the voltage balancer circuit used in some of the other implementations. The relay 248 may be provided as a latching relay to reduce (and ideally eliminate) power dissipation. A non-latching relay or solid-state switches could also be used.

Having described certain embodiments, which serve to illustrate various concepts, structures, and techniques sought to be protected herein, it will be apparent to those of ordinary skill in the art that other embodiments incorporating these concepts, structures, and techniques may be used. Elements of different embodiments described hereinabove may be combined to form other embodiments not specifically set forth above and, further, elements described in the context of a single embodiment may be provided separately or in any suitable sub-combination. Accordingly, it is submitted that scope of protection sought herein should not be limited to the described embodiments but rather should be limited only by the spirit and scope of the following claims.

The invention claimed is:

1. A circuit comprising:
a reconfigurable rectifier having an input port configured to receive an alternating current (ac) input signal and first, second, and third output ports, wherein in a first configuration the reconfigurable rectifier is configured to deliver power at the first output port and in a second configuration the reconfigurable rectifier is configured to deliver power to at least the second output port;
a voltage balancer having first and second input ports and first and second output ports, with the first and second input ports of the voltage balancer coupled to the second and third output ports of the reconfigurable rectifier and configured to balance a voltage at the first and second output ports;
a first converter having an input coupled to the first port of the voltage balancer and having an output at which a first converted voltage signal is provided;
a second converter having an input coupled to the second port of the voltage balancer and having an output at which a second converted voltage signal is provided; and
wherein, in the second configuration, the reconfigurable rectifier is configured to deliver power to the second output port, wherein the voltage balancer is configured to transfer power received from the second output port of the reconfigurable rectifier such that the first and second converters may process substantially equal power levels.
2. The circuit of claim 1 wherein, in the second configuration, the reconfigurable rectifier is configured to deliver power to the second and third output ports in alternating half ac cycles, wherein the voltage balancer is configured to
transfer power received from the second and third output ports of the reconfigurable rectifier such that the first and second converters may process substantially equal power levels.
3. The circuit of claim 1 further comprising at least one configuration switch having a first state to place the reconfigurable rectifier in the first configuration and a second state to place the reconfigurable rectifier in the second configuration.
4. The circuit of claim 1 further comprising a controller, wherein in response to a value of the ac input signal, the controller places the configuration switch in the first or second state.
5. The circuit of claim $\mathbf{1}$ wherein the first and second converters are provided as buck converters.
6. The circuit of claim $\mathbf{5}$ wherein the first converter is provided as a resonant-transition buck converter and the second converter is provided as an inverted resonant-transition buck converter.
7. The circuit of claim 1 further comprising an energy buffer circuit network having an input coupled to the outputs of the first and second converters and at least one energy storage element, the energy buffer circuit network configured to provide buffering of twice-line-frequency energy.
8. The circuit of claim 7 wherein the outputs of the first and second converters are connected such that the energy buffer circuit network appears across the sum of the output voltages of the first and second converters.
9. The circuit of claim 7 wherein the at least one energy storage element comprises at least one capacitor.
10. The circuit of claim 7 wherein the energy buffer circuit network comprises three capacitors connected in a delta fashion.
11. A circuit comprising:
a reconfigurable rectifier having an input port configured to receive an alternating current (ac) input signal and first, second, and third output ports, wherein in a first configuration the reconfigurable rectifier is configured to deliver power at the first output port and in a second configuration the reconfigurable rectifier is configured to deliver power to at least the second output port;
a voltage balancer having first and second input ports and first and second output ports, with the first and second input ports of the voltage balancer coupled to the second and third output ports of the reconfigurable rectifier and configured to balance a voltage at the first and second output ports;
a first converter having an input coupled to the first port of the voltage balancer and having an output at which a first converted voltage signal is provided;
a second converter having an input coupled to the second port of the voltage balancer and having an output at which a second converted voltage signal is provided; and
wherein, in the second configuration, the reconfigurable rectifier is configured to deliver power to the second and third output ports in alternating half ac cycles, wherein the voltage balancer is configured to transfer power received from the second and third output ports of the reconfigurable rectifier such that the first and second converters may process substantially equal power levels.
12. The circuit of claim 11 wherein, in the second configuration, the reconfigurable rectifier is configured to deliver power to the second output port, wherein the voltage balancer is configured to transfer power received from the
second output port of the reconfigurable rectifier such that the first and second converters may process substantially equal power levels.
13. The circuit of claim $\mathbf{1 1}$ further comprising at least one configuration switch having a first state to place the recon- 5 figurable rectifier in the first configuration and a second state to place the reconfigurable rectifier in the second configuration.
14. The circuit of claim 11 further comprising a controller, wherein in response to a value of the ac input signal, the 10 controller places the configuration switch in the first or second state.
15. The circuit of claim 11 wherein the first and second converters are provided as buck converters.
16. The circuit of claim $\mathbf{1 5}$ wherein the first converter is 15 provided as a resonant-transition buck converter and the second converter is provided as an inverted resonant-transition buck converter.
17. The circuit of claim 11 further comprising an energy buffer circuit network having an input coupled to the outputs 20 of the first and second converters and at least one energy storage element, the energy buffer circuit network configured to provide buffering of twice-line-frequency energy.
18. The circuit of claim 17 wherein the outputs of the first and second converters are connected such that the energy 25 buffer circuit network appears across the sum of the output voltages of the first and second converters.
19. The circuit of claim 17 wherein the at least one energy storage element comprises at least one capacitor.
20. The circuit of claim $\mathbf{1 7}$ wherein the energy buffer 30 circuit network comprises three capacitors connected in a delta fashion.
