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Abstract—This paper presents a design procedure for inductors
based on low-permeability magnetic materials, for use in very
high frequency (VHF) power conversion. The proposed procedure
offers an easy and fast way to compare different magnetic
materials based on Steinmetz parameters and quickly select the
best among them, to estimate the achievable inductor quality
factor and size, and to design the inductor. Approximations used
in the proposed methods are discussed. Geometry optimization of
magnetic-core inductors is also investigated. The proposed design
procedure and methods are verified by experiments.

I. BACKGROUND

There is a growing interest in switched-mode power elec-
tronics capable of efficient operation at very high switching
frequencies (e.g., 10-100 MHz) [1]. Power electronics op-
erating at such frequencies include resonant inverters [2]–
[11] (e.g., for heating, plasma generation, imaging, and com-
munications) and resonant dc-dc converters [2], [4], [12]–
[21] (which utilize high frequency operation to achieve small
size and fast transient response.) These designs utilize mag-
netic components operating at high frequencies, and often
under large flux swings. These magnetic components should
have a high quality factor to achieve high efficiency power
conversion. Unfortunately, most high-permeability magnetic
materials exhibit unacceptably high losses at frequencies above
a few megahertz. There are some low-permeability materials
(e.g., relative permeabilities in the range of 4-40) that can
be used effectively at moderate flux swings at frequencies
up to many tens of megahertz [22]–[24]. However, working
with such low-permeability materials - and the ungapped core
structures they are typically available in - presents somewhat
different constraints and challenges than with typical high-
permeability low-frequency materials [25]. Because of VHF
operation and the low-permeability characteristics of such
materials, the operating flux density is limited by core loss
rather than saturation, and a gap is not necessary to prevent
the core from saturating in many applications. Without a gap,
the core loss begins to dominate the total loss and copper
loss can be ignored in many cases. The performance of a
VHF magnetic-core inductor thus depends heavily on the
loss characteristics of the magnetic material. Moreover, there
appears to be a lack of good design procedures for a selecting
among low-permeability magnetic materials and available core
sizes.
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This paper, which expands upon an earlier conference
paper [26], investigates a design procedure for inductors using
low-permeability magnetic materials. This method is based
on knowledge of the material loss characteristics, such as
collected in [22], [24], and is particularly suited for VHF
inductor designs. With the methods developed here, different
magnetic materials are compared fairly and conveniently, and
both the achievable quality factor and size of a magnetic-core
inductor can be evaluated before the final design.

Section II of the paper introduces the inductor design con-
siderations and questions to be addressed. Section III illustrates
the inductor design procedure and methods employed in it.
Section IV shows some experimental results to verify the
design procedure. Section V concludes the paper. In Appen-
dices A and B, we check an important assumption behind
our methods as well as investigate geometry optimization
problems of magnetic-core inductors.

II. INDUCTOR DESIGN CONSIDERATIONS AND QUESTIONS

In this paper, we only consider inductor designs under a lim-
ited set of conditions in order to make the problem tractable.
Nevertheless, these conditions are both very reasonable and
practical for inductors at very high frequencies. The limited
conditions we address are as follows:

1) Use of ungapped cores made of low-permeability mate-
rials.

2) Single-layer, foil wound designs in the skin depth limit
on toroidal core shapes. A toroidal inductor design keeps
most of flux inside the core, thus reducing EMI/EMC
problems. A foil winding design can further reduce the
copper loss compared to a wire-wound one [27].

3) Design based on knowledge of Steinmetz parameters
for materials of interest. Such parameters are often not
published or readily available for these materials, but
can be obtained using methods such as that of [22], [24],
[28].

4) Design assuming sinusoidal excitation at one frequency.
In VHF resonant inverters or converters, inductors often
have approximately sinusoidal current at a single fre-
quency. Note that consideration of variable frequency
operation, dc currents, and multiple frequency compo-
nents greatly increases complexity of both loss calcula-
tion and design [29]–[34].

Fig. 1 shows an inductor has been designed and fabricated
under the above conditions and replaced the original coreless
resonant inductor Ls in a 30 MHz Φ2 inverter [3], [23], [24].
The magnetic-core inductor provides a substantial volumetric
advantage over that achievable with a coreless design in this
application [23], [24].
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Ls
(a) An example of an inductor fabricated from copper foil
and a commercial magnetic core of N40 from Ceramic
Magnetics.

Ls

(b) Φ2 inverter with the magnetic-core inductor LS

Fig. 1. Photographs of the Φ2 inverter prototype with a magnetic-core
inductor [24].

Given a selection of available cores in different low-
permeability materials, and a design specification including
inductance L, current amplitude Ipk, frequency fs, we answer
three important questions about design of VHF inductors under
the above conditions:

1) Which magnetic material from an available set will yield
maximum quality factor QL for a given size?

2) Given the ability to continuously scale core size, what
material will yield the smallest size for a given quality
factor QL?

3) For an achievable quality factor QL and inductor size,
how should we design the inductor with the selected best
magnetic material to meet design specifications?

These questions are addressed in the next section.

III. INDUCTOR DESIGN PROCEDURE AND METHODS

A. Inductor Design Procedure

Fig. 2 provides a high-level illustration of the proposed
design procedure. First, select design specifications from the
system requirements. Second, select the best magnetic material
from a set of low-permeability materials with known Steinmetz
parameters. In the third and fourth steps, we estimate the
achievable quality factor QL and size of the inductor with the
best available material. If the results are satisfactory, we design

Fig. 2. Inductor design procedure

the inductor. If not, it means the design requirements can’t
be satisfied even with the best available magnetic material,
and one must revise the inductor design requirements. A key
feature of this design procedure is that magnetic materials
are compared first and the best material is selected before
completing any individual design, greatly reducing design time
and effort. Some important information such as the maximum
quality factor QL, and the smallest possible size can be
acquired before the final design. By this procedure, we design
an inductor only with one size and one material instead of
investigating numerous (perhaps thousands) of combinations
to meet the design specifications.

(1) to (3) are used often in our design procedure. In VHF
power conversion, ac losses (conductor/copper and core losses)
usually dominate and we thus ignore dc losses (conductor loss)
here. In (1) and (2), we use the quality factor QL to evaluate
the ac losses of an inductor at a single frequency. Rac is
the equivalent total ac resistance of a magnetic-core inductor
including copper loss and core loss, Rcu is the equivalent
resistance owing to copper loss, and Rco is an equivalent
resistance owing to core loss. The Steinmetz equation is an
empirical means to estimate loss characteristics of magnetic
materials [35], [36]. It has many extensions [29]–[34], [36]–
[38], but we only consider the formulation for sinusoidal drive
at a single frequency here. In (3), Bpk is the peak amplitude
of average (sinusoidal) flux density inside the material and
PV is power loss per unit core volume 1. K and β are
called Steinmetz parameters. K and β have been calculated

1Use of average flux density in the core simplifies the calculations. For
typical core sizes, this approximation is well justified, and the error of this
approximation should be lower than 10% as shown in Appendix A. (Flux
nonuniformity for other cases is treated in [39], [40], for example.)
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for several commercial low-permeability rf magnetic materials
from 20 MHz to 70 MHz in [22], [24], [28].

QL =
ωL

Rac
(1)

Rac = Rcu +Rco (2)

PV = KBβpk (3)

B. Method to Select Among Magnetic Materials

In the second step of the design procedure, we identify the
best material. We begin with a coreless inductor to make a
comparison among different design options (including mag-
netic materials) for a given L, Ipk, fs, minimum QL and
maximum size limitation. Ignoring the “single-turn” induc-
tance associated with the circumferential current component
around the core [27], the number of turns Nair for a coreless
inductor can be calculated from (4) [27]:

Nair ≈
√√√√ 2πL

hµ0 ln
(
do
di

) (4)

do, di and h are the outside diameter, inside diameter and
height of the coreless inductor. The approximate average flux
density Bpk−air inside the core is calculated by (5):

Bpk−air =
µ0NairIpk

0.5π(di + do)
(5)

Likewise, the number of turns N and average flux density Bpk
of a magnetic-core inductor are calculated by (6) and (7) 2:

N ≈
√√√√ 2πL

hµ0µr ln
(
do
di

) (6)

Bpk =
µ0µrNIpk

0.5π(di + do)
= µ0.5

r Bpk−air (7)

For a given L and specified dimensions in (7), average flux
density Bpk inside the core may be different for each magnetic
material, which is one of the reasons we can’t compare their
loss characteristics for different magnetic materials directly
at the same flux density level. However, we propose here a
method by which direct comparisons can be made: Bpk of each
magnetic material can be normalized to the coreless inductor
flux density Bpk−air by its relative permeability µr. For a
given design specification, all magnetic materials will have
the same normalized flux density, which is equal to µ−0.5r Bpk.
Given a set of Steinmetz parameters, we can draw the curves
of PV vs. µ−0.5r Bpk for all available magnetic materials. We
compare PV of these materials at µ−0.5r Bpk = Bpk−air and
decide which material has the smallest core loss for the given
design specification.

An example is shown in Fig. 3, in which we consider
a design of a magnetic-core inductor at Ipk = 2 A and

2The relative permeability can be also addressed in a complex form which
is equal to µ′r − µ′′r j. µ′r is equal to µr in (6) and (7) and µ′′r represents
the loss which is also a function of flux density. µ′′r can be calculated from
the core loss measurement results in [24]. In this paper, we use curves and
Steinmetz parameters to represent losses instead of complex permeability.

1.0                     1.3                    1.6                    2.010
2

10
3

10
4

μ
r
−0.5Bpk − AC Flux Density Amplitude (mT)

P
V
 (

m
W

/c
m

3 )

M3
P
67
N40

Pv=614 mW/cm3

Fig. 3. Inductor design example (do = 12.7 mm, di = 6.3 mm, h =
6.3 mm, L = 200 nH, Ipk = 2 A, fs = 30 MHz and Bpk−air = 1.3 mT).

fs = 30 MHz with L = 200 nH and maximum size
do = 12.7 mm, di = 6.3 mm and h = 6.3 mm 3. Beginning
with a coreless inductor, we calculate Bpk−air = 1.3 mT from
(4) and (5). Using data from [22], [24], loss curves of PV vs.
µ−0.5r Bpk are plotted for the materials N40, P, M3 and 67 4.
We compare their PV at Bpk−air and find that N40 material
has the smallest core loss (614 mw/cm3). If we ignore the
copper loss, the magnetic-core inductor with N40 material
will achieve the highest QL for given design specifications.
We can also observe in Fig. 3 that N40 is better than the other
magnetic materials and 67 is worse than the others over a wide
range of flux density. This will help us to design a magnetic-
core inductor if its operating current level is unknown or very
wide.

So far, we still don’t know if the magnetic-core inductor
with the best material is better than a coreless inductor of the
same size. There is no core loss and Steinmetz parameters
for a coreless inductor. But we can still compare its copper
loss to core losses of other magnetic materials on the same
graph. To accommodate the coreless design, we define PV−air
at Bpk−air as the power loss per unit volume for a coreless
inductor and calculate it by (8):

PV−air =
Rcu−air

2V
I2pk (8)

Rcu−air is the copper resistance of a coreless inductor and
V is the volume of the coreless inductor. Rcu−air (or the
copper resistance of a magnetic-core inductor Rcu) depends
heavily on a coreless or magnetic-core inductor winding
design pattern. One could find the ac resistance of a coreless
inductor by constructing and measuring it or simulating it

3Examples in the paper are confined to 30MHz. However, the same design
procedure can be applied to a broader range of frequencies.

4-17 material in [22], [24] has a very low relative permeability and low core
loss characteristics. Compared to its core loss, the copper loss of -17 material
can’t be ignored. As a special case, -17 is not considered here. However, the
methods introduced in this paper can still be applied for -17 material with
special considerations of its copper loss.
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Fig. 4. Inductor design example including the power loss characteristic of a
coreless inductor (do = 12.7 mm, di = 6.3 mm, h = 6.3 mm, L = 200 nH,
Ipk = 2 A, fs = 30 MHz and Bpk−air = 1.3 mT).

using computational techniques. Alternatively, the resistance
can be estimated for different design variants:

1) In [22], [24], the windings are made of an equal-width
foil-like conductor, and Rcu−single−turn is the ac copper
resistance of a single turn inductor:

Rcu = N2Rcu−single−turn

≈ N2 ρcu
πδcu

(
2h

di
+
do
di
− 1

)
(9)

2) In [22], [24], Rcu can alternatively be estimated from
the foil width, length and skin depth:

Rcu ≈
ρculcu
δcuwcu

(10)

3) In [27], the windings are made of foil-like conductor
tapered to conform to the shape of the toroid:

Rcu = N2Rcu−single−turn

≈ N2 ρcu
πδcu

(
h

di
+

h

do
+ 2 ln

do
di

)
(11)

For example, the loss characteristics of a coreless inductor
estimated by (9) is included in Fig. 4 . We can see N40 is the
only magnetic material which has lower loss than the coreless
inductor. Thus the magnetic-core inductor built with N40 may
have a higher quality factor QL than the coreless inductor. The
magnetic-core inductor built with other materials (e.g. M3, P
and 67) will not be better than the coreless inductor and need
not be considered in the following steps. Here, we can see that
this comparison lets us exclude most of available magnetic
materials in the pool from the design, saving time and effort.

From previous measurements in [22], [24], the core loss
(Rco) usually dominates the total loss of an ungapped VHF
magnetic-core inductor. However, this statement should be
checked to make sure that it is still correct for an individual
design. By a similar method, we can define the copper loss
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Fig. 5. Inductor design example including the copper loss characteristic of
a magnetic-core inductor (do = 12.7 mm, di = 6.3 mm, h = 6.3 mm,
L = 200 nH, Ipk = 2 A, fs = 30 MHz and Bpk−air = 1.3 mT).

per unit volume PV−cu of a magnetic-core inductor and mark
it on the graph of PV vs. µ−0.5r Bpk. From (4) and (6),

N = µ−0.5r Nair (12)

Rcu = N2Rcu−single−turn = µ−1r Rcu−air (13)

PV−cu =
Rcu
2V

I2pk =
µ−1r Rcu−air

2V
I2pk = µ−1r PV−air (14)

PV−air can be calculated from (8). The copper loss character-
istic of a magnetic-core inductor for the example specifications
built in N40 magnetic material is marked in Fig. 5. In this
example, the copper loss of the magnetic-core inductor is much
smaller than its core loss (an order of magnitude or more 5).

C. QL Estimation with Given Maximum Inductor Size

In the third step of the design procedure in Fig. 2, we
estimate the highest quality factor that can be achieved. If
we ignore the copper loss comparing to the core loss of the
magnetic-core inductor, the quality factor QL can be estimated
by (15) and (16):

Rco ≈
Total Core Loss

0.5I2pk
=

PV V

0.5I2pk
(15)

QL ≈
ωL

Rco
= ωL

0.5I2pk
PV V

(16)

E.g., for the magnetic-core inductor built in N40, PV =
614 mW/cm3 at Bpk−air = 1.3 mT, and QL ≈ 198 by (16).
In this example Rco ≈ 0.19 Ω and Rcu ≈ 0.03 Ω, where
Rco � Rcu. QL can also be estimated by (2), in which copper
loss is included, and QL ≈ 171 by (2).

5We note that the simple copper loss calculations of (9) in a cored inductor
design may have up to 30% error [22], [24], but this degree of accuracy is
sufficient for our present purposes.
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D. Size Estimation with Given Minimum QL

In this subsection, we illustrate the third step in our inductor
design procedure, estimating minimum achievable inductor
size for a required quality factor. Because the method in-
troduced in this subsection is not as simple and direct as
the method in Section III-B, we begin this subsection with a
general description of the method. Then we derive equations
needed in our method for inductor size estimation. As we have
done in Section III-B, step by step design examples are given
to aid understanding of the method.

We again begin with a coreless inductor design, calculate its
size and compare the size of a magnetic-core inductor with it.
In our method, we define the scaling factor λ as the dimension
ratio of a magnetic-core inductor and the coreless inductor for
given L, QL, fs and Ipk, and we assume that the relative
ratio of the 3 dimensions is kept constant during the scaling.
Thus, we scale each dimension (x, y, z) describing the shape
of the coreless inductor by a factor λ to get the corresponding
dimension of a magnetic-core inductor: the coreless inductor
thus has λ = 1, and the magnetic-core inductor with the
minimum λ has the smallest size.

Our method has four main steps:
1) Given L, Ipk, fs and minimum required QL, design a

coreless inductor and get its dimension parameters do,
di, h.

2) Calculate Bpk−air of the coreless inductor, compare its
PV−air to PV of other magnetic materials at Bpk−air on
the graph of PV vs. µ−0.5r Bpk and decide the possible
best materials for the inductor design.

3) Calculate the scaling factor λ for the possible best
materials.

4) Check the flux density B′pk, core loss PV ′ , and copper
loss PV ′−cu of the magnetic-core inductor after scaling
on the graph of PV vs. µ−0.5r Bpk.

1) Step I, Calculate Coreless Design: From (4), the quality
factor QL of a coreless inductor can be calculated by (17):

QL =
ωL

Rcu−air
=

µ0fs
Rcu−single−turn

h ln

(
do
di

)
(17)

Rcu−single−turn can be estimated by (9) or (11).
If we assume di = 0.5do, we can solve the dimension

parameters do, di, h of a coreless inductor from (9)/(11), and
(17) for given fs, QL and ratio of h and do. In Appendix B, we
show that this assumption is very reasonable because letting
di = 0.5do yields an inductor with nearly optimum QL and
thus the smallest size.

2) Step II, Evaluate Magnetic Materials: After calculating
the dimensions of the coreless inductor, its Bpk−air and
PV−air can be calculated by (5) and (8). PV at Bpk−air of
all the magnetic materials can be found from the graph of
PV vs. µ−0.5r Bpk. For example, we consider the design of a
coreless inductor with L = 200 nH, Ipk = 2 A, fs = 30 MHz,
and QL = 116. We define this coreless inductor as having
λ = 1. Its dimensions are do = 12.7 mm, di = 6.3 mm and
h = 6.3 mm. The question we seek to answer is: if we build
an inductor with magnetic materials, how small it could be
while achieving the specified minimum QL. We first calculate

Bpk−air = 1.3 mT and PV−air = 1073 mW/cm3 and then
find PV for each magnetic material in Fig. 4. N40 is the
only magnetic material which has PV smaller than PV−air,
thus the magnetic-core inductor made in N40 is the only
possible design with the size smaller than the coreless inductor
(λ < 1) at the same QL. Magnetic-core inductors made by
other materials will have larger sizes than the coreless inductor
and are not considered here. This conclusion is further proved
in (26). Just as in Section III-B, we can see here our method
in this subsection again helps us to exclude many available
magnetic materials in the pool from the complicated problem
of inductor size scaling.

3) Step III, Scaling: Here we introduce how to perform
the scaling. Before beginning the derivation, we define the
following parameters:

1) V , do, di, h, N , Bpk, PV , PV−cu, Rco and Rcu are
the volume, outside diameter, inside diameter, height,
number of turns, average peak ac flux density, core loss
density, copper loss density, equivalent core resistance,
and copper resistance of a magnetic-core inductor before
scaling - i.e., having the same size as the coreless
inductor (λ = 1).

2) V ′, d′o, d
′
i, h
′, N ′, B′pk, P ′V , PV ′−cu, R′co and R′cu are

the same definitions of the magnetic-core inductor after
scaling.

3) V , do, di, h, Nair, Bpk−air, PV−air and Rcu−air are
the similiar definitions of the coreless inductor before
scaling (λ = 1)

From the definition above,

λ =
d′o
do

=
d′i
di

=
h′

h
(18)

V ′ = λ3V (19)

Thus: similar to (6),

N ′ =

√√√√ 2πL

λhµ0µr ln
(
λdo
λdi

) = λ−0.5N (20)

Similar to (7) and from (20),

B′pk =
µ0µrN

′Ipk
0.5π(d′i + d′o)

= λ−1.5Bpk (21)

PV ′ = KB′βpk = λ−1.5βPV (22)

From (9) and (11), we observe that Rcu−single−turn is con-
stant during scaling. This is because the effective conductor
thickness is the skin depth (invariant to scaling). This results
in constant “ohms per square”, making the total single-turn
resistance invariant to scaling. From (12) and (20),

R′cu = N ′2Rcu−single−turn = λ−1µ−1r Rcu−air (23)

Similar to (14), and from (19) and (23):

PV ′−cu =
R′cu
2V ′

I2pk = λ−4µ−1r PV−air (24)

For constant QL, the total loss is the same for both the coreless
inductor and the magnetic-core inductor, thus from (19), (22)
and (24):

PV ′V
′ + PV ′−cuV

′ = PV−airV (25)
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Fig. 6. The magnetic-core inductor after scaling design

λ3−1.5β
PV

PV−air
+ λ−1µ−1r = 1 (26)

The scaling factor λ can be calculated by (26), if we know
PV , relative permeability µr, and Steinmetz parameter β of
the magnetic material, and PV−air of the coreless inductor.
Because of the usual case for Steinmetz parameters (e.g., β >
2), PV should be smaller than PV−air to get λ < 1 from
(26). This explains why we don’t have to consider magnetic
materials which have PV larger than PV−air. (26) is the key
equation for calculating achievable design scaling at constant
QL through the use of an ungapped magnetic core.

Let’s continue our example shown in Fig. 4. For N40
material, PV = 614 mw/cm3 at Bpk−air = 1.3 mT, β = 2.02
at 30 MHz and µr = 15, the scaling factor λ = 0.17 by
solving (26).

4) Step IV, Check Design Assumptions: As a last step, we
check the flux density B′pk, core loss P ′V , and copper loss
PV ′−cu of the inductor after scaling on the graph of PV vs.
µ−0.5r Bpk. From (7) and (21):

µ−0.5r B′pk = λ−1.5Bpk−air (27)

In the example, P ′V = 1.3 × 105 mW/cm3 by (22) and
P ′V−cu = 8.6 × 104 mW/cm3 by (24) are shown in Fig. 6.
We can still see that the core loss dominates the total loss.
With completion of this last step, we now have an inductor
geometry and scaling that achieves the smallest size at the
required QL.

5) Inductor Scaling with Multiple choices of Magnetic
Materials: Here we give an example of the solution when
there is more than one possible material which can be used
to build a cored inductor having smaller size than the coreless
inductor and thus λ < 1.

We consider the design of a coreless inductor with L =
200 nH, Ipk = 0.5 A, fs = 30 MHz, and QL = 116. We
design a coreless inductor which has λ = 1 and dimensions
of do = 12.7 mm, di = 6.3 mm and h = 6.3 mm. We firstly
calculate Bpk−air = 0.32 mT and PV−air = 67 mW/cm3

and then find PV for each magnetic material in Fig. 7. P, M3
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Fig. 7. Loss plots of inductor design scaling example (do = 12.7 mm,
di = 6.3 mm, h = 6.3 mm, L = 200 nH, Ipk = 0.5 A, fs = 30 MHz and
Bpk−air = 0.32 mT).

and N40 are magnetic materials which have PV smaller than
PV−air, thus magnetic-core inductors made with these three
materials may possibly be smaller than the coreless inductor
(λ < 1). Because P material has both a larger core loss PV
and a larger slope (= β) of the loss curve than N40 material at
Bpk−air, we can immediately conclude that P material will not
be competitive with N40 material for this design. However, we
can’t immediately determine which of M3 and N40 materials
is better: M3 has a lower PV at Bpk−air but a higher slope of
the loss curve than N40. We thus consider both M3 and N40
as possible best materials and calculate their scaling factor λ
by (26). We list the calculation results in Table I which also
includes P material to confirm our conclusion. From Table I,
we can see that the magnetic-core inductor built with N40 still
has the smallest scaling factor for the specified minimum QL,
and represents the best design choice.

TABLE I
COMPARISON OF SCALING FACTOR λ AMONG MAGNETIC-CORE

INDUCTORS BUILT WITH P, M3 AND N40 MATERIALS.

Material P M3 N40

PV (mW/cm3) 57.1 16.9 37.3

µr 40 12 15

β 2.33 3.24 2.02

λ by (26) 0.77 0.52 0.16

We check the flux density B′pk, core loss P ′V , and copper
loss PV ′−cu of the scaled magnetic-core inductor built with
N40 material on the graph of PV vs. µ−0.5r Bpk by (22),
(24) and (27). In the example, the scaled design operates
at a normalized flux density µ−0.5r B′pk = 5.0 mT, P ′V =
9621 mW/cm3, and P ′V−cu = 6819 mW/cm3 as illustrated
in Fig. 8. We can see that the core loss of N40 is the lowest
among the materials at this normalized flux density of the
N40 design. If we build a magnetic-core inductor with other
materials with the same size after scaling, the inductor will
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Fig. 8. The magnetic-core inductors after scaling

have a lower quality factor and must have a bigger size to
satisfy the design requirement for minimum quality factor;
this confirms our conclusion that the magnetic-core inductor
built with N40 will have the smallest size.

E. Inductor Design with the Best Magnetic Material

Having satisfied quality factor QL and inductor size re-
quirements, the inductor can be designed with the selected
best magnetic material (N40). To provide a complete answer
for the previous design example, we summarize the results of
each step in Fig. 2:

1) We give the design requirements: L = 200 nH, Ipk =
2 A, fs = 30 MHz, minimum QL = 116 and maximum
size of do = 12.7 mm, di = 6.3 mm and h = 6.3 mm.

2) Given available magnetic materials (67, P, M3 and N40)
and their Steinmetz parameters, we determine that N40
is the best material for design.

3) Given the maximum size, estimate the highest QL of a
magnetic-core inductor with N40 material (about QL =
171).

4) Given the minimum QL, estimate the scaling factor λ =
0.17 and the minimum size do = 2.2 mm, di = 1.1 mm
and h = 1.1 mm calculated by (18).

5) We check the results in the third and fourth steps and
see if they satisfy the design requirements.

6) If we prefer a core inductor with the highest QL at the
maximum size, the inductor will have a number of turns
N = 4 calculated by (6), an inductance L = 199 nH,
and a core size of do = 12.7 mm, di = 6.3 mm and
h = 6.3 mm. Its quality factor QL has been estimated
in Section III-C as 198 neglecting copper loss and 171
including copper loss. If we prefer a cored inductor
with the minimum size at the minimum allowed QL of
116, the inductor will have a number of turns N ′ = 10
calculated by (20) and the core size is do = 2.2 mm,
di = 1.1 mm and h = 1.1 mm.

Compared to a coreless design, the magnetic-core inductor
with N40 material will have 47% higher quality factor QL for

the same maximum size or 83% size reduction for the same
minimum quality factor.

F. Relationship between Quality Factor QL and Inductor Size

The method to calculate the scaling factor λ proposed in
Section III-D has two shortcomings: the first is that we may
need to rely on some numerical methods to solve the nonlinear
equation (26), and the second is that it doesn’t reveal the
relationship of a magnetic-core inductor’s quality factor and
its size in a direct and intuitively understandable way. In
this subsection, we study the inductor’s quality factor as the
function of its scaling factor λ.

We again begin our derivations with a coreless inductor. We
define quality factor QL0 with given maximum size (λ = 1)
and calculate it by the following equation:

QL0 =
ωL

Rcu−air
=

µ0f

Rcu−single−turn
h ln

(
do
di

)
(28)

Because Rcu−single−turn is constant during the scaling as de-
scribed before, the quality factor after scaling can be calculated
by the following equation:

QL(λ) =
ωL

Rcu
=

µ0f

Rcu−single−turn
hλ ln

(
doλ

diλ

)
= λQL0 (29)

From (29), we can see there is a linear functional relationship
between quality factor QL and scaling factor λ for a core-
less inductor. This general result for coreless design is well
known; see the classic scaling rules for coreless solenoids, for
example [1], [41]–[44]. For a magnetic-core inductor, from
(23),

R′cu = λ−1µ−1r Rcu−air =
ωL

λµrQ0
(30)

From (19) and (22),

R′co =
PV ′V

′

0.5I2pk
=
λ3−1.5βPV V

0.5I2pk
= λ3−1.5β

PV
PV−air

PV−airV

0.5I2pk

= λ3−1.5β
PV

PV−air
Rcu−air = λ3−1.5β

PV
PV−air

ωL

QL0
(31)

From (30) and (31),

QL(λ) =
ωL

R′cu +R′co
=

QL0
1
λµr

+ λ3−1.5β PV

PV−air

(32)

Starting from a baseline design, from (29) and (32), we can
plot QL vs. λ for magnetic-core inductors made in all available
magnetic materials, as well as for a coreless inductor. An
example is shown in Fig. 9. The baseline design specifications
are L = 200 nH, Ipk = 2 A, f = 30 MHz, and QL = 116. At
λ = 1, the coreless inductor has dimensions do = 12.7 mm,
di = 6.3 mm and h = 6.3 mm. For a given QL, we can use
results such as in Fig. 9 to find its scaling factor λ and further
decide the inductor size for every magnetic material using (18).
Moreover, for a given size (scaling factor λ), we can find the
quality factor QL that is achievable for each material.

While this approach to explore inductor scaling and sizing
is informative, it still has some shortcomings. The first one
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is that we have to generate a new graph by (29) and (32)
for each baseline design of interest. The second one is that
we can’t a priori exclude some magnetic materials from
consideration as we did in Section III-D. If we have dozens
of magnetic materials, the graph of QL vs. λ will become
very complicated. The third one is that all these materials are
compared on the graph at a fixed current level and not over
a wide operating range. Nevertheless the methods illustrated
here provide a better view into design tradeoffs than one
otherwise available.

IV. EXPERIMENTAL VERIFICATION

We carried out several experiments to verify the design
procedure illustrated in this paper. Firstly, we want to verify
the design steps 2 and 3 in Fig. 2. That is, given available
magnetic materials and design requirements (inductance L,
current amplitude Ipk, and frequency fs), we want to de-
termine the best material to yield maximum quality factor
QL for a given size, and estimate the highest QL that can
be achieved at that size. Design parameters for the example
application are repeated here: do = 12.7 mm, di = 6.3 mm,
h = 6.3 mm, L = 200 nH, Ipk = 2 A, and fs = 30 MHz.
As predicted in our design procedure, N40 is the best material
and the magnetic-core inductor with N40 has quality factor
QL = 171. We designed and fabricated a magnetic-core
inductor with copper foil and N40 core to satisfy the design
specifications, and measured its inductance and quality factor
with the experimental methods in [22]. To make comparisons
with other designs, we fabricated a coreless inductor and
magnetic-core inductors with 67, M3 and P materials and
similar core sizes. The results are listed and compared in
Table II. The cores in M3 and P materials have di larger than
the design specification, e.g. dido = 0.62 vs. 0.50. The core loss
estimation error due to this is small loss less than 4% higher
as shown in Fig. 11 in Appendix B. The core in 67 material
has a di larger and h lower than the design specifications, and

its volume is thus 71.4% of the specified one. The core loss
estimation error due to this is only 3.1% higher calculated by
(48) where β = 2.18 [22]. We can see the measurement results
fit very well with the predicted values and the magnetic-core
inductor with N40 material is the best design compared to
others as we have predicted in our design procedure. To some
extent, these results also verify the results of approximation
and optimizations shown in Appendices A and B.

TABLE II
COMPARISON AMONG CORELESS INDUCTORS AND MAGNETIC-CORE

INDUCTORS DESIGNED AT Ipk = 2 A AND fs = 30 MHZ IN DIFFERENT

MAGNETIC MATERIALS.

Material N40 M3 P 67 Coreless

Suppliers Ceramic
Mag-
netics

National
Magnetics
Group

Ferro-
nics

Fair-
rite

N/A

Permeability 15 12 40 40 1

Designations T5025-
25T

998 11-
250-P

59670-
00301

N/A

do (mm) 12.7 12.7 12.7 12.7 12.7

di (mm) 6.3 7.9 7.9 7.2 6.3

h (mm) 6.3 6.4 6.4 5.0 6.3

Turns Number N 4 5 3 3 14

Predicted L (nH) 199 180 219 203 173

Measured L (nH) 230 181 262 235 245

Predicted QL 171 74 81 39 116

Measured QL 167 65 87 45 96

Secondly, we verified the design step 4 illustrated in Sec-
tion III-D. That is, given L, Ipk, fs and the minimum QL,
determine the best material for design and estimate the mini-
mum size achievable for that QL requirement. This experiment
is much more difficult than the first one because limited avail-
ability of core sizes. If we design a magnetic-core inductor
with N40 material which has the scaling factor λ = 0.17 as
calculated in Section III-D, the inductor after scaling has 10
turns and dimensions d′o = 2.16 mm, d′i = 1.07 mm and
h′ = 1.07 mm. The winding of copper foil has a width of
less than 0.34 mm! It is very hard to wind such a narrow
copper foil on this tiny core by hand. The magnetic-core
inductor with P material in Section III-D5 has a higher scaling
factor λ and thus a larger core size after scaling. So for
simplicity, we verified the design of P material instead of
N40. The design parameters are repeated here: L = 200 nH,
Ipk = 0.5 A, fs = 30 MHz and QL = 116. The scaling factor
λ = 0.77 calculated by (26) and shown in Table I. The core
dimensions after scaling are d′o = 9.78 mm, d′i = 4.85 mm
and h′ = 4.85 mm. The available core with the closest size has
dimensions d′o = 9.63 mm, d′i = 4.66 mm and h′ = 3.21 mm.
We designed and fabricated a 3-turn magnetic-core inductor
with P material and measured its inductance L and quality
factor QL. The results are shown in Table III. We can see the
measurement results fit very well with the predicted value (for
the actual size) and (26) is thus verified.

Thirdly, we verified (32) and the relationship of QL vs. λ
shown in Fig. 9. The design parameters are repeated here: L =
200 nH, Ipk = 2 A and fs = 30 MHz. At λ = 1, the coreless
inductor has the dimensions do = 12.7 mm, di = 6.3 mm
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TABLE III
MAGNETIC-CORE INDUCTOR DESIGNED AT L = 200 NH, Ipk = 0.5 A

AND fs = 30 MHZ WITH THE SCALING FACTOR λ = 0.77.

Material P Designation 11-220-P
Turns Number N 3 d′o (mm) 9.63

d′i (mm) 4.66 h′ (mm) 3.21

Predicted L (nH) 168 Measured L (nH) 181

Predicted QL 110 Measured QL 105

and h = 6.3 mm. We design a magnetic-core inductor with
N40 material and scaling factor λ = 0.5. The magnetic-core
inductor after scaling thus has dimensions d′o = 6.35 mm,
d′i = 3.15 mm and h′ = 3.15 mm. The closest available core
size has the dimensions d′o = 5.84 mm, d′i = 3.05 mm and
h′ = 4.06 mm. We designed and fabricated a 5-turn magnetic-
core inductor with N40 materials and measure its inductance
L and inductor quality factor QL. The results are shown in
Table IV. We can see the measurement results fit very well
with predicted value (for the actual size) and thus (26) and
Fig. 9 are verified.

TABLE IV
MAGNETIC-CORE INDUCTOR DESIGNED AT L = 200 NH, Ipk = 2 A AND

fs = 30 MHZ WITH THE SCALING FACTOR λ = 0.5.

Material N40 Designation T231216T
Turns Number N 5 d′o (mm) 5.84

d′i (mm) 3.05 h′ (mm) 4.06

Predicted L (nH) 198 Measured L (nH) 180

Predicted QL 160 Measured QL 154

V. CONCLUSION

In this paper, we propose an inductor design procedure
using low permeability magnetic materials. The design pro-
cedure is based on the use of Steinmetz parameters and low-
permeability ungapped cores. With this procedure, different
magnetic materials are compared fairly and fast, and both the
quality factor QL and the size of a magnetic-core inductor
can be predicted before the final design. We also compare a
magnetic-core inductor design to a coreless inductor design in
our design procedure. Some problems, such as optimization
of magnetic-core inductors, are also investigated in this paper.
The procedure and methods proposed in this paper can help to
design magnetic-core inductors with low-permeability rf core
materials.

APPENDIX A
APPROXIMATIONS USED IN THE PROPOSED METHODS

In Section III, we average the flux density inside a toroidal
core to simplify our calculations. Because the flux density
inside a toroidal core is actually not uniform, we need to
know if our approximation is reasonable. For a magnetic-core
inductor, the average flux density is:

Bpk =
µ0µrNIpk

0.5π(do + di)
=

Ipk
0.25(do + di)

√√√√ µ0µrL

2πh ln
(
do
di

) (33)

The average total core loss:

P (di) = PV V = KBβpkπ

[(
do
2

)2

−
(
di
2

)2
]
h =

πhK

 Ipk
0.25(do + di)

√√√√ µ0µrL

2πh ln
(
do
di

)

β [(

do
2

)2

−
(
di
2

)2
]

(34)

The total core loss P0 is calculated without the approximation
of uniform flux. From (6),

Bpk(r) =
µ0µrNIpk

2πr
=
Ipk
r

√√√√ µ0µrL

2πh ln
(
do
di

) (35)

Where r specifies a radius from the center of the core (di2 <
r < do

2 ).

P0(di) =

∫ do
2

di
2

PV dV =

∫ do
2

di
2

KBpk(r)β2πrhdr

= 2πhK

Ipk√√√√ µ0µrL

2πh ln
(
do
di

)

β ∫ do

2

di
2

r1−βdr (36)

If β 6= 2,

P0(di) =
2πhK

2− β

Ipk√√√√ µ0µrL

2πh ln
(
do
di

)

β [(

do
2

)2−β

−

(
di
2

)2−β
]

(37)

If β = 2,
P0(di) = µ0µrKLI

2
pk (38)

We compare P0 and P and define the error by the following
equation:

Error = 1− P (di)

P0(di)
(39)

from (34) and (37), if β 6= 2,

Error = 1− (2− β)2β−1

[
1−

(
di
do

)2](
1 + di

do

)−β
1−

(
di
do

)2−β (40)

from (34) and (38), if β = 2,

Error = 1− 2
1−

(
di
do

)2
(

1 + di
do

)2
ln
(
do
di

) (41)

We can see Error only depends on the magnetic material
Steinmetz parameter β and the dimension ratio of di to do.
Error is plotted in Fig. 10 for different di

do
and β. We can

see it is below 10% if β is less than 3 and di
do
> 0.52 which

is typical for most of available commercial magnetic cores.
We assume an optimum di ≈ 0.5do later. So the error of this
approximation should be lower than 10%, which is reasonable.
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APPENDIX B
OPTIMIZATION OF MAGNETIC-CORE INDUCTORS

In Section III, different magnetic materials are compared
and evaluated with the assumption that optimum magnetic-
core inductors made in all these materials will have the same
relative dimensions as the coreless design on which they are
based. However, magnetic-core inductors may have their own
relative optimum dimensions for the maximum quality factor
QL or the minimum size for different materials, thus the
methods proposed in Section III may not be a fair comparison.
That is, we need to establish whether or not the best shape
for an inductor changes significantly with scale or material
characteristics.

As will be seen, the results are quite reasonable and the
approaches of Section III lead to near optimum designs under
a wide range of conditions. We consider two optimization
cases in this paper. First, we assume that a toroidal magnetic-
core inductor’s do and h are restricted to be constant (e.g., as
stipulated by the specification of a power electronics circuit),
and we optimize di to get the maximum quality factor QL.
Second, we assume its volume V is restricted to be constant,
and we optimize do, di and h to get the maximum quality
factor QL. In all the optimizations, make the assumption that
core losses dominate and neglect copper loss. We do take into
account the fact that the flux density inside the core is not
uniform when calculating core loss.

A. Optimization of di at Fixed do and h

From (37) and (38), let di = 0.5do and we normalize the
total core loss P0(di) by the total loss P0 at di = 0.5do. If
β 6= 2,

P0(di)

P0(0.5do)
=

 ln 2

ln
(
do
di

)
0.5β

1−
(
di
do

)2−β
1− 0.52−β

 (42)

If β = 2,
P0(di)

P0(0.5do)
= 1 (43)
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, normalized to that with di
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= 0.5. Results

are parameterized in Steinmetz parameter β. It can be seen that over a wide
range of β, di

do
= 0.5 is very close to the optimum, and that results are not

highly sensitive to do
di

.

In (42), P0(di)
P0(0.5do)

only depends on the ratio of do
di

and
Steinmetz parameter β. We plot P0 as a function of do

di
for

different β in Fig. 11. From Fig. 11, we can see that the
optimum di is around 0.4do, with an exact value that depends
on β. When di varies between 0.22do and 0.64do, the total
core loss P is very flat and the deviation from the minimum
core loss is less than 10%. We choose di = 0.5do instead of
di = 0.4do for the following considerations: firstly, di = 0.5do
is a more typical dimension ratio for commercial magnetic
cores (e.g., see Table II); secondly, as shown in Appendix
A, the error due to the assumption of average flux density
is less than 10% if di ≥ 0.5do. The error in assuming
that the optimum inside diameter is di = 0.5do is lower
than 2% for a wide range of β values. So we can think
di = 0.5do as the nearly-optimum dimension for a wide range
of magnetic materials. We can thus compare and evaluate
different magnetic materials under the same dimensions and
our assumption in Section III is correct.

B. For a Constant Volume V , Optimization of Dimensions do,
di and h

In (38), if β = 2, core loss P is constant, independent of
dimensions, If β 6= 2, similar to (37),

P (h, do, di) =
2πhK

2− β

Ipk√√√√ µ0µrL

2πh ln
(
do
di

)

β [(

do
2

)2−β

−

(
di
2

)2−β
]

(44)

h =
4V

π (d2o − d2i )
(45)
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Eliminating h, we find:

P (V, do, di) =
8KV

(2− β)(d2o − d2i )

Ipk
√√√√µ0µrL(d2o − d2i )

8V ln
(
do
di

)

β

[(
do
2

)2−β

−
(
di
2

)2−β
]

(46)

P

(
V,
do
di

)
=

8KV

2− β

(
Ipk

√
µ0µrL

2V

)β 
√√√√√√1−

(
di
do

)2
ln
(
do
di

)

β

1−
(
di
do

)2−β
1−

(
di
do

)2
 (47)

From (47), we know the total loss P only depends on the
volume V and the ratio of di and do. If di

do
constant, we can

get:

P

(
V,
di
do

)
∝ V 1−0.5β (48)

Because β ≥ 2 in most materials, the total core loss P
decreases as the inductor’s volume V is increased. Larger
volume will always help reduce core loss and improve quality
factor QL in a magnetic-core inductor (so long as core loss is
dominant).

If we normalize P by P (di = 0.5do):

P (V, 0.5) =
2KV

2− β

(
Ipk

√
µ0µrL

2V

)β [√
1− 2−2

ln(2)

]β
[

1− 2β−2

1− 2−2

]
≈ 2KV

2− β

(
Ipk

√
µ0µrL

2V

)β [
1− 2β−2

0.75

]
(49)

For a constant volume V ,

P
(
V, dido

)
P (V, 0.5)

=


√√√√√√1−

(
di
do

)2
ln
(
do
di

)

β 1−

(
di
do

)2−β
1−

(
di
do

)2


[
0.75

1− 2β−2

]
(50)

Notice that in (50) the normalized P only depends on the
material’s Steinmetz parameter β and the ratio of di to do,
independent of V and other individual dimension parameters
(e.g., do, di, or h). Fig. 12 plots the normalized P vs. dido . For
di > 0.3do, the total loss P is flat and almost constant. Thus
we can conclude that, to a first approximation, the total loss P
only depends on the inductor’s volume V , and is independent
of its dimensions di, do, and h when di > 0.3do. In other
words, for a given total core loss P , there is only one solution
for the volume V that will achieve it, but there are many
solutions for the dimensions di, do, and h that can be used.
Moreover, from this result we can conclude that we needn’t
concern ourselves with the optimum geometry changing with
absolute scale (in terms of core loss), so may confidently
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Fig. 12. Core loss optimization for a constant volume.

use the results of Section III in finding an optimum inductor
design.
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