
  

 

  
Abstract— This paper compares the relative suitability of four 

different alternator topologies for use in an advanced automobile 
electrical system. The four candidate topologies are: the salient- 
and non-salient-pole wound-field synchronous alternators, the 
Lundell alternator, and the homopolar inductor alternator. The 
analysis is made with the alternator utilizing a  switched-mode 
rectifier that enables load matching for optimal power 
transmission. Part I models and compares the alternators using 
hand calculations. Lumped parameter models of each of the four 
alternators are derived. The output power and efficiency of each 
machine is evaluated when utilized with a switched-mode boost 
rectifier and operating at the load matched condition. A direct 
mathematical comparison of the sizing equations for the four 
classes of machines is offered. Based on the analysis, the Lundell 
alternator has the highest power output and efficiency when 
compared at the same dimensions and field ampere turns 
excitation. Part II will cover a more detailed and accurate cost 
optimization of the four alternators while subject to the 
constraints and requirements of future automobiles. 
 

Index Terms-- Automotive alternator, synchronous generator, 
switched-mode rectifier, non-salient wound-field alternator, 
salient wound-field alternator, Lundell alternator, homopolar 
inductor alternator , constant voltage load, generator lumped 
parameters 

I. NOMENCLATURE 

a  number of parallel windings 
bp  pole width 
bpN pole width of north pole at a particular axial location 
bpS pole width of south pole at a particular axial location 
B  flux density 
Br  air gap flux density due to the field winding 
Bs  air gap flux density due to the armature currents 
Fr  MMF due to the field winding 
Fs  MMF due to the three phase armature currents 
g  air gap width 
g1 shorter air gap width 
g2 longer air gap width 
ia, ib, ic  armature phase currents 
if  field current 
Is  magnitude of armature phase current 
kwf field distribution winding factor 
kwn armature distribution winding factor of nth harmonic 
L  air gap length 
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Laf field armature mutual inductance 
Ls  synchronous inductance 
NfIf field ampere turns 
Ns  series armature turns 
p  pole pairs 
P  output power 
R  equivalent resistance due to effects of diode rectifer 
Rs  armature series resistance 
ra   physical armature resistance 
Vd  diode drop 
Vo  effective voltage at output of rectifier 
Vsa, Vsb, Vsc   back-emf voltages 
Xd, Xq   direct and quadrature reactances 
z  axial location 
β  pole width over pole pair pitch 
β’  pole width over pole pitch (pole fraction) 
δ  electrical angle when t=0 
η  efficiency 
Λ  permeance per unit area 
λ  flux linked 
λaf flux linked by armature winding due to field current 
λas flux linked by armature winding due to three phase 

armature currents 
ω  electrical frequency in rad/s 
θr  rotor angle in mechanical degrees 
τp    pole pitch 

II. INTRODUCTION  

 
It is commonly asserted that the Lundell (or claw 

pole) alternator construction that is universally used on 
modern automobiles will need to be replaced to meet the 
increased power demands of future vehicles. Nevertheless, a 
design strategy has been introduced that uses switched-mode 
rectification to substantially enhance the Lundell 
alternator/rectifier system [1]. This approach allows the 
effective voltage seen by the bridge rectifier to be varied in 
what is effectively a load-impedance matching technique to 
enable optimum transmission of power. The use of this 
technique with an over-the-counter automotive alternator has 
shown substantial increases in power output and efficiency. 
One goal of the study described here is to determine how much 
more performance can be obtained if the Lundell alternator is 
optimized for use with the switched mode rectifier. In other 
words, how much more cost effective will the alternator be 
having been reoptimized  for the new duty?  Conclusions are 
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also offered concerning the feasibility of building belt-driven 
automotive alternators for future high-electric-demand 
automobiles.  

In addition to the Lundell alternator [2,3], alternative 
alternator designs are investigated and compared, including the  
wound-field synchronous alternator and the homopolar 
inductor alternator [4,5,6,7,8].  All candidate alternators are 
required to produce a minimum specified power at each of two 
speeds, and to operate at and achieve a minimum efficiency at 
a third combination of speed and load.  The machines are 
constrained to obey heat flux limitations based on heat flux 
levels obtained in today's automotive alternators.  Magnetic 
parts are sized to avoid magnetic saturation.  The resulting 
rotor inertias and rotational stresses are evaluated and 
compared.  

 III. ALTERNATOR TYPES 

 
       Figures 1 through 4 present the alternative alternator 
constructions under consideration.  These diagrams are 
somewhat stylized representations which can be useful for 
comparing  specific machines.  These figures are generated by 
a drawing program from a few specific parameters. The 
diagrams to the left reasonably portray a section view in the 
axial direction, assuming that the section is taken at the 
boundary between the motor stack and the end turns.  Many of 
the dimensions of the drawing represent values determined 
during the course of the cost optimization.  (Figures 1 through 
4 merely introduce the machine types; the dimensions in these 
figures do not represent optimized machines.)  In an optimized 
machine, the rotor outside diameter, stator inside and outside 
diameter are to scale.  So are the stator and (if applicable) the 
rotor slot depth and slot fraction.  The inner circle does not 
represent an optimized value.  The diagrams to the right of 
each motor axial section represent another rotor section, this 
time a vertical section taken through the diameter.  In the 
representation of an optimized machine, all the axial 
dimensions represent values selected by the optimization 
process.  The small blocks extending from the blocks 
representing the stator (and possibly rotor) stack(s) are 
approximations of the volume occupied by winding end turns. 

         The first class of alternators is the wound-field 
synchronous alternator, of which we have the non-salient and 
salient-pole types shown in Figures 1 and 2, respectively. The 
non-salient-pole wound-field alternator has the field winding 
wound in slots such that the resulting flux density is 
approximately sinusoidal. The salient-pole wound-field 
alternator has the field winding wound around poles. 
Consecutive poles are wound to have opposite polarities.  

The third machine is the Lundell or claw-pole 
alternator which is currently used in automobiles (Fig. 3). The 
Lundell alternator has cantilevered poles. All north poles are 
attached to a disk on one side,  and all south poles are attached 
to a disk on the opposite side. The poles alternate polarities as 
one traverses the air gap in the circumferential direction. The 
field winding is a single coil wound concentric with the axis of 
rotation.   

The fourth type of machine is the homopolar inductor 
alternator shown in Fig. 4. This machine has a field winding 
wound on the stator concentric with the axis of rotation. It is 
wound right next to the armature winding in the stator.  The 
machine has two axially distinct stator stacks, and excitation 
flux flows in a path that crosses one air gap in a radially 
outward direction, continues axially through a tubular 
ferromagnetic path (the outermost member in Fig. 4) to the 
other stator stack, crosses the air gap at the second stack in the 
radially inward direction, and returns axially through the rotor 
body.  The north poles are all formed from the rotor body at 
the axial location of one of the stacks.  The south poles are 
formed on the same rotor body at a different axial location. All 
four alternators have conventional three-phase armature 
windings wound along slots in the stator.     

 
Fig. 1. Non-salient pole wound-field synchronous alternator 

 
Fig. 2. Salient-pole wound-field synchronous alternator 

 
Fig. 3. Lundell alternator 

 
Fig. 4. Homopolar inductor alternator 
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         Research has previously been done on all four 
alternators. The rotor construction of the wound field non-
salient pole synchronous alternator is more robust than the 
salient pole version because its field windings are located in 
the rotor slots. It can therefore be run at higher speeds than the 
salient-pole rotor . The salient pole synchronous generator has 
the highest electrical output per pound per rpm among all 
generators according to a NASA study published in 1965 [9]. 
It also has the lowest reactances and therefore its regulation 
and transient performance are the best. Its speed limitations are 
due to the high stresses that result from centrifugal loading of 
the field coils . For extreme environments, the Lundell and 
homopolar inductor alternator are more likely to be used than 
the wound-field alternators . The Lundell is typically smaller 
and lighter than the homopolar inductor alternator [9]. The 
Lundell, however, is more stress limited because of its 
cantilevered poles [10]. On the other hand, due to its robust 
rotor structure, the homopolar inductor alternator can be run at 
the  highest speeds  among all four alternators [9]. The flux per 
pole is higher for the homopolar inductor alternator than that 
of a salient pole alternator because of the DC flux that it has to 
carry. This DC flux makes it larger than the equivalently rated 
salient pole alternator [10]. Also, the field excitation coil 
location increases the length of the machine. It increases the 
length of the stator conductor where no voltage is being 
generated thus resulting in higher copper losses [11]. The 
homopolar inductor alternator is the heaviest of all the 
alternators at the same rpm [9]. The many interlocked trade-
offs among these machine types necessitates careful evaluation 
and comparison to identify suitable designs for future 
alternators.  
           The work presented involves optimizing these 
alternators given the requirements of future automobiles and 
evaluating their performances and limitations. The first set of 
optimizations will be done assuming these alternators are 
utilized with a diode bridge. The second set of optimizations 
will assume that these alternators are connected to a switched 
mode rectifier. We will then assess how much smaller and less 
expensive these alternators could be made given the 
availability of the switched-mode rectifier. This has not been 
done previously.  

 IV. EQUIVALENT CIRCUIT MODEL 

 
In order to determine alternator output power, an 

equivalent electrical circuit model per phase is derived taking 
saliency into account. This circuit as seen from the terminals 
of each phase will be a voltage source in series with an 
inductor and resistor. This circuit successfully models all four 
alternators.  

The flux linkage equations for each alternator can be 
expressed as            

      

 

)3/2cos()3/2cos()cos(
)3/2cos()3/22cos()2cos()3/22cos(
)3/2cos()2cos()3/22cos()3/22cos(

)cos()3/22cos()3/22cos()2cos(

2022

2202

2220







































+−
+−++−++−
−+−++−+−

++−−+−+

=





















f

c

b

a

r

ssssssss

ssssssss

ssssssss

f

c

b

a

i
i
i
i

LpMpMpM
pMpLLpLLpLL
pMpLLpLLpLL

pMpLLpLLpLL

πθπθθ
πθπθθπθ
πθθπθπθ

θπθπθθ

λ
λ
λ
λ

  

  (1) 

where   pθ = ωt + δ  is in electrical degrees, and the  Ls2 term 
reflects saliency. The flux linked by the armature winding due 
to the field excitation is 
                                        )cos( faf ipM θλ =                       (2) 

The generated back voltage is 

                          f
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ipM
dt

d
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λ
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The three-phase armature currents (motor convention) may be 
expressed as 
                                 )sin( φθ −= pIi sa                                (4)                                                             
                           )3/2sin( πφθ −−= pIi sb           (5)                             
                            )3/2sin( πφθ +−= pIi sc                         (6) 
where φ is the internal power factor angle or the angle between 
the back-emf and the armature phase current. The flux linked 
by phase a due to all three armature phases (with if  equal to 
zero) is                                                                         
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The non-ohmic voltage drop across phase a due to balanced 
currents in the three phases is  
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from which expressions for the equivalent inductance and 
resistance are 
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2
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2
3

2 φω sas LrR +=         (10) 

where ra is the ohmic resistance of the armature winding. 
The equivalent circuit representing these equations is 

shown in Fig. 5. Here Vsa, Vsb, and Vsc are the back-emf 
excitation voltages,  dλaf /dt,   dλbf /dt, and dλcf /dt. 
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Fig. 5. Alternator, rectifier and constant voltage load circuit 
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      In [1], it is shown that the use of a boost rectifier circuit 

can be understood as affecting the operation of the machine in 
essentially the same manner as the circuit of Fig. 5, with the 
additional feature that varying the duty ratio on the boost 
switches gives the flexibility to vary the effective dc voltage 
seen at the rectifier output over a range from zero to the 
physical limit of the dc source. This boost rectifier (switched-
mode rectifier) circuit is shown in Fig. 6.   
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Fig. 6. Alternator, switched-mode rectifier, and constant 
voltage load circuit 

 
The work above shows how we can conveniently 

include the effect of rotor saliency in our analysis, but the 
rectifier in Fig. 5 (or 6) still presents a non-linear element 
which precludes a fast, analytic solution.  Reference [12] 
provides a convenient approximation which permits a simple 
solution.  Based on [12], the circuit in Fig. 5 (or 6) can be 
approximated by the circuit shown in Fig. 7 with balanced 
resistive loads. 
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Fig. 7. Equivalent circuit with balanced resistive loads 

 
 Following [12], each resistive load has the value   
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and  Vd  is a diode drop. The power angle can be obtained 
using  
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R
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The output power is then 
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V. LUMPED PARAMETER MODEL DERIVATIONS 

 
Having completed the circuit model, the appropriate 

inductances and resistances must then be determined. The 
procedure is to first determine the flux density in the air gap 
due to the field winding and the armature windings and then to 
determine the flux linked by the stator windings from the 
various sources. The flux linked by each armature winding due 
to the field excitation will give the back electromotive force 
while the flux linked by each armature winding due to all three 
armature phase currents yields the synchronous reactance and 
equivalent resistance due to armature reaction. The flux 
density in the air gap is found by multiplying the 
magnetomotive force (MMF) across the air gap by the 
permeance per unit area. The MMF drop across the air gap is 
obtained assuming that the permeability of steel is infinite 
which implies that flux lines are assumed to terminate 
perpendicularly to the steel. The details of the process are 
instructive and straightforward, but also tedious.  They are 
presented in Appendix A.  

VI. SIMPLIFIED ANALYTICAL EVALUATION AND CALCULATION 

  
The comparative evaluation performed in this paper 

is conducted in several ways and at several different levels of 
analytical and computational sophistication.  The most 
extensive comparison is the result of a cost optimization study.  
This study compares machines of different constructions, each 
of which is capable of operating over a specified area in 
power-speed space and meeting certain other constraints. The 
lowest cost machine of each type meeting all the constraints is 
selected.  The results of that comparison will be presented later 
in Section VII.  In this section we present simplified analytical 
results which provide some level of insight about how 
fundamental differences among  the machine types give rise to 
substantial differences in performance. 
 

        Consider the approximate equivalent circuit of  Fig. 7.  It 
is readily shown that for fixed values of machine parameters, 
maximum power is delivered to the load at the load-matched 
condition (when the synchronous reactance equals the effective 
resistance).  The principal focus of this paper is the lowest cost 
machine meeting a set of specifications. A comparison of 
machines loaded to maximum power may nevertheless be 
relevant, because least cost machines may be expected to be 
loaded to maximum power at one or more design points.  As 
an aside, there is one more consideration to make before 
accepting that impedance-matched (maximum power) 
operation is relevant to the pursuit of least-cost machines.   If 
the power rating of the machine is a continuous-, as opposed to 
a momentary-, rating, impedance-matched operation is 
relevant only if the machine is well enough cooled to operate 
at this loading.  As a rule, the inductive contribution to 
machine reactance is dominant over the resistive component, 
so armature resistive losses tend to be small compared to load 
power.  In practice, it often is possible to design machines 
which are adequately cooled when operated at the impedance-
matched load. 
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The power delivered to an impedance-matched load 
can be written approximately as 

                ( ) 2  
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This is obtained having ignored the armature resistance, diode 
drop, the larger air gap in the case of the homopolar inductor 
alternator, saliency, and the leakage inductances. Following 
(15) and Appendix A.6, the maximum power capability  (at the 
impedance-matched load) for each of the the four machines is 
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for the non-salient wound-field alternator, 
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for the salient wound-field alternator,      
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for the Lundell alternator, and  
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for the homopolar inductor alternator.  
           The symbols R, L, and g in (16)-(19) correspond to the 
air gap radius, axial length, and radial width respectively. The 
ratios of output powers among the machines can be found in 
Table I. 
 

TABLE I  
APPROXIMATE RATIOS OF OUTPUT POWER  

(COLUMN OVER ROW) 
 

 Non-
salient 
WFSM 

Salient 
WFSM 

Lundell Homopolar 

Non-salient 
WFSM 

1 1/kwf
2 p2/kwf

2 p2/(2kwf
2) 

Salient 
WFSM 

 1 p2 p2/2 

Lundell   1 ½ 
Homopolar    1 
 

It is evident that the Lundell alternator produces the 
most power in this comparison, followed by the homopolar 
inductor alternator, the salient-pole wound field alternator, and 
lastly, the non-salient pole wound field alternator. The factor 
of  p2 results from the Lundell and inductor alternators having 
their field windings exciting all the poles. For these two 
machines, the required number of field ampere turns is 
independent of the pole count.  
           Output power comparisons given the same number of 
field ampere turns are shown below in Fig. 8. The ordinate is 
terminal voltage operating with a resistive load, normalized to 
the no-load voltage. This shows that at the same number of 

field ampere turns, the Lundell outperforms the rest by a large 
margin.   Fig. 8 is prepared for the case of four pole pairs. 

The comparison which gives rise to Fig. 8 required 
many choices to be able to reduce the mathematical 
expressions for the capabilities of each machine type to simple 
expressions with many common terms.  Many of these choices 
were of necessity arbitrary, but we tried in every case to be 
reasonable.  The single most important feature giving rise to 
the striking comparison in Fig. 8 is the fact that in the Lundell 
and homopolar machines, each ampere turn of field excitation 
excites field flux in every pole, while in the wound-field 
machines, each ampere turn excites flux in only one pole.  This 
difference is made evident by requiring all machine types to 
have the same number of poles. The output power at each of 
the peaks corresponds directly to equations 16-19. 

It can further be argued that comparison at a constant 
number of field ampere turns is also unreasonable.  It is quite 
credible that the cost of a field ampere turn for a Lundell 
alternator as measured by most reasonable means is higher 
than the cost of a field ampere turn for a wound field machine. 
However, the fundamental message of Fig. 8 does not depend 
on the comparison being accurate to 5% or even to 50%.  
Rather, the principal conclusion from Fig. 8 is that the 
favorable field excitation path of the Lundell alternator (and to 
a strong extent, the homopolar inductor alternator) is a 
powerful advantage over other machine types, in terms of 
power deliverable from a machine of a given size.  For other 
machine types to prevail in an overall comparison, it will be 
necessary that these other types exhibit strong advantages in 
other elements of design not considered here. 

Fig. 9 shows a different comparison. Here the 
machine types are compared at constant field ampere turns per 
pole. On this basis, the salient pole machine is the equal of the 
Lundell alternator. In practice, it may not be possible to put so 
many field ampere turns on a salient-pole structure. 

 
 
Fig. 8.  Output power curves vs. voltage at same number of 
field ampere turns 
 
       At the load matched condition, the alternator efficiency 
was derived to be 
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with a minimum value of zero which occurs when all the 
power generated is used to power the field winding, resulting 
in no net output power. Only the field and armature conduction 
losses were taken into account for this efficiency calculation. 
The efficiency is independent of field ampere turns and 
therefore independent of the power requirement. This is 
because at the load matched condition, the field copper losses 
and armature losses are proportional to the square of the 
number of field ampere turns which is the same dependence 
that the gross output power has on ampere turns as shown in 
equation 15. The efficiency is also independent of the 
operating voltage at every load matched point. The efficiency, 
however, varies with speed. The efficiency increases with 
larger field armature mutual inductance. Using the same 
approximations and simplified conditions for the comparison 
of output power, the Lundell alternator has the highest 
efficiency. This is primarily due to its large field armature 
mutual inductance. 

Based on these simple calculations, the Lundell 
alternator is the most promising of the candidates considered 
here. In addition to its many simplifications, this analysis 
ignores several other considerations which may substantially 
influence choice of machine type. For example, for a given 
diameter and speed, the rotor stresses in a Lundell alternator 
can be expected to be much higher than in other machine 
types. If the range of diameters  and speeds under 
consideration are such that rotor stresses are comfortably 
below stress limits for all machine types, then this difference is 
unimportant. But if rotor stresses in a Lundell  rotor are 
excessive, the application may require use of a different 
machine type. But in general, in circumstances where 
maximum power per unit volume is required and, by 
implication, assuming comparable average mass densities, also 
in cases where maximum power per unit weight is the 
objective, the Lundell machine warrants high consideration.  

 
 
 
 

  
 
Fig. 9. Output power curves vs. voltage at the same number of 

field ampere turns per pole  

                                                                                

VII. CONCLUSION 

 
        To summarize, the lumped parameter models for the four 
alternators are tied together with the circuit model for the 
switched-mode rectifier in order to derive analytical 
expressions for machine performance at the load matched 
condition. The results indicate the relative performance of the 
four alternators. The calculations show that the Lundell 
alternator has the highest output power and efficiency at the 
load matched condition and is therefore, the preferred 
candidate for use with the switched-mode rectifier. There are, 
however, several factors which were ignored in the 
calculations. These are the mechanical stresses, saturation, 
heat flux, iron losses, saliency, etc. Therefore, a more accurate 
study such as a full grid-search optimization taking into 
account all relevant requirements coupled with finite element 
analysis of these alternators is worth pursuing. This work is  
presented in part II. 

VIII. APPENDIX 

A.  Lumped parameter derivations 
 
 The appendix provides the detailed derivations of the 
lumped parameters in Section IV and forms the basis for the 
evaluation in Section V. 
 
    1)   General fourier series representation of a rectangular 
waveform 

 
The Fourier expansion for the flux densities in the air 

gap can be derived from the generalized rectangular waveform 
shown in Fig. A.1. 
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Fig. A.1. Arbitrary rectangular waveform 

 
The waveform could be expressed mathematically as 
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For a square wave, centered about 0, H=-L and  β=1/2. The 
fourier series coefficients are 
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    2)   Field flux densities 
 
          a)    Non-salient wound-field alternator field flux 
density 

 
For the wound-field non-salient pole machine, the 

step-like MMF is approximated by a square wave whose 
amplitude is affected by the distribution winding factor. The 
permeance per unit area is constant at  µ0/g or the permeability 
of free space divided by the air gap width. The MMF 
distribution can be written as 
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The gap permeance can be defined as 
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Finally, the air gap flux density due to the field winding can be 
written as 
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where n represents the nth harmonic, p for pole pairs, NfIf  for 
field ampere turns, and kwf  for the field winding factor. This 
flux density is shown in Fig. A.2. 
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Fig. A.2. Non-salient wound-field alternator flux density 
waveform 
 
          b)   Salient-pole wound-field alternator field flux density 

 
The air gap flux density in the salient-pole wound 

field alternator due to the field winding when expressed as the 
product of the MMF drop and the permeance per unit area can 
be expressed as the sum of two waveforms, one due to the 
north poles and the other due to the south poles. The two 
waveforms are added together to get the actual flux density 
shown in Fig. A.3.  

gp

IN ff 0

2
µ

gp

IN ff 0

2
µ

−

Fig. A.3. Salient wound-field alternator field flux density 
waveform  
  
 The flux density waveform due to the north poles can 
be expressed as 
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where m represents the mth harmonic, and β for the pole width 
divided by the width of a pole pair. The flux density waveform 
due to the south poles can be expressed as 
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The sum of the two waveforms give the total flux density 
waveform in the air gap due to the field winding which can be 
shown to be 
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          c)   Lundell alternator field flux density 
  
 Looking at the Lundell alternator, along a slice at 
some circumferential position, the flux density waveform will 
look like the waveform shown in Fig. A.4. 
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Fig. A.4.Lundell alternator field flux density waveform 

 
 The flux densities due to the north and south poles can be 
determined separately and added. The flux density 
contribution by the north poles can be expressed as 
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where bp2 and bp1 are the widths of the wider end and narrower 
end of a pole, respectively, and τp is a pole pitch. Similarly, the 
flux density waveforms due to the south poles are  
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 The sum of both waveforms gives the total flux 
density due to the field winding which are 
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where the different harmonic components are 
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          d)   Homopolar inductor alternator field flux density 
 
 For the inductor alternator, the flux density on one 
stack can be found to be as shown in Fig. A.5. 
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Fig. A.5. Homopolar inductor alternator field flux density 
waveform 
 
 The expression for the waveform in the air gap where 
the north poles are located are 
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where g1 and g2 are the shorter and longer air gap widths, 
respectively. Likewise, for the air gap where the south poles 
are, the flux density waveform due to the field winding can be 
shown to be 
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    3)   Armature flux densities 
 
 For the armature windings as sources of MMF, the 
MMF due to each winding is approximated as a square wave 
with a winding factor  kwn  
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where Ns is the number of armature turns per phase. The 
combined MMF is 
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of which only the fundamental is considered. In order to 
determine the fundamental flux density in the air gap due to 
the three-phase armature currents, the fundamental MMF is 
multiplied by the 0th component and 2nd harmonic of the air 
gap permeance function. There are slight modifications though 
to the air gap as seen from the armature winding compared to 
that seen by the field winding. The non-salient wound-field 
alternator still has the same permeance. The salient-pole has a 
slight change. The interpolar gaps are no longer seen to be of 
infinite gap width. Also, the north and south poles need not be 
considered separate. The new permeance function assumes the 
following form 
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For the Lundell alternator, the two permeance functions 
determined separately can be combined as one permeance 
function. For the north poles, the permeance function is 
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For the south poles, the permeance function is 
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The combined permeance function can be shown to be 
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Likewise, for the homopolar inductor alternator, the 
permeance function is approximated as 
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for the north poles and  
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for the south poles. The flux density is then the fundamental 
component of the MMF multiplied by the approximate 
permeance function from which the fundamental component is 
obtained 
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where the subscript 1 is used to represent the fundamental 
component. 
 
 
    4)   Flux linkages 
 
 For the first three machines, the flux linked by the 
armature winding is 
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For the inductor alternator, the flux linked is  
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which is the sum of the flux linked for the north and south 
poles separately.  It can be shown that (A.54) and (A.55) are 
the same.  
 
 
    5)   Lumped parameters 
 
 The field armature mutual inductance is 
                                      fafaf IL /λ=        (A.56) 

In order to determine the equivalent inductance and resistance 
due to armature reaction, the flux linked will end up having the 
following form 
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seen earlier. From these sL and sR can both be determined 

since 
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The lumped parameters for each alternator can then be 
derived.The non-salient wound-field synchronous alternator 
has the following lumped parameters: 
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                                        as rR =              (A.63) 
The salient wound-field synchronous alternator has the 
following lumped parameters: 
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The Lundell alternator has the following lumped parameters: 
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And finally, the homopolar inductor alternator has the 
following lumped parameters: 
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Note that the general forms of Ls and Rs from which Ls0 and Ls2 
can be obtained are 
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    6)   Simplified lumped parameters 

 
 In order to obtain the simplified power comparisons in 
Section V, some simplifying assumptions were made. As can 
be found in Section V, equation (15), the power delivered to 
an impedance-matched load is based on the mutual inductance 
Laf and the synchronous inductance Ls. This section obtains 
these simplified inductances. For the non-salient wound field 
alternator, no simplifying assumptions are made and therefore 
(A.61) and (A.62) are used. For the salient wound field 
alternator, the pole width is assumed to be half a pole pitch 
( 2/ppb τ= ), the larger air gap is ignored ( ∞→2g ), and 

saliency is ignored  ( ( )φ2cos  term). The simplified 
inductances are 
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For the Lundell alternator, the poles are assumed to be 
rectangular and with widths equal to a pole pitch 
( ppp bb τ== 21 ) . In addition, saliency is ignored. The 

simplified inductances are  
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For the homopolar inductor alternator, the width of a pole is 
made to span a pole pitch ( ppb τ= ), and the larger air gap is 

ignored ( ∞→2g ) 
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